
Cohesion And Coupling

John G. Artus
BSEE

MSSE

INCOSE ESEP

© Copyright 2022-2025 John G. Artus 1www.jgartus.net

Lecture 43, v02

Overview of Cohesion and Coupling

• Cohesion and coupling are common concepts in designing modular
systems

• Cohesion and coupling are defined in terms of a system and the inter-module and
intra-module relationships among a system’s functional components

• The terms cohesion and coupling are deliberately chosen to be
ambiguous and abstract, because the concepts are abstract

• They each manifest in some form, within any kind of system we might care to
consider, in accordance with the skill of the architect to synthesize the
individual, lower-level functions cohesively into the same module

• Generally, it is the goal of the architect to achieve high cohesion
and loose coupling

• High cohesion indicates modules whose functional components relate closely with
each other in terms of them all working to fulfill common functional objectives
of the parent module

• Since the functional components are so closely related, most of the information needs will be
satisfied through intra-module communications (within the same module)

• Loose coupling indicates that there is less need for modules to communicate with
each other in order to support the information needs of the module’s functional
components

• This means that the number of intra-module communications (among different modules) is reduced,
since highly cohesive functions within a module get most of what they need from within the module

• The opposite is tight coupling in which modules are tightly coupled due to the poor placement of
functional components within modules that require them to conduct extensive inter-module (module-
to-module) communications to satisfy their information needs

www.jgartus.net© Copyright 2022-2025 John G. Artus 2

Module

High Cohesion
All Like-Functions Are Organized

Less-Than-Ideal Cohesion
Some Like-Functions Are Mis-Organized

Results in more

inter-module

communications

Index

• Cohesion

• Coupling

• Cohesion and Coupling in Architecture Patterns

• Cohesion Versus Coupling

• Example: Semi-Autonomous Lawn Mowing System

• Example: Multi-Layer Air Defense System

• Measuring Cohesion

• Measuring Coupling and Instability

www.jgartus.net© Copyright 2022-2025 John G. Artus 3

Cohesion

www.jgartus.net© Copyright 2022-2025 John G. Artus 4

Overview of Cohesion

• Cohesion is the degree to which the functional components of a system support the functional
objectives of a single functional “module”

• A “module” can be considered to be the hierarchical functional parent of the functions grouped together

• A module with high cohesion contains elements that are highly related to each other and united in their purpose

• Cohesion is an intra-module concept (within the same module)

• A highly-cohesive module is generally stable in the face of changes made to other modules
• This is due to the fact that highly cohesive modules tend to be more independent of each other

• Such greater independence tends to isolate one module from changes implemented in other modules

• High cohesion means that a module has a lesser number of concerns to deal with, since the
module is tightly focused on its objective (it does one thing well) and its interfaces are simpler

• Low cohesion means that a module has a greater number of concerns to deal with (it tries to
do too many things) due to the fact that its functions are varied in purpose, and/or it has more
complex interfaces

• Highly cohesive modules tend to have a higher degree of intra-module coupling (internal to the
module)

• This is a natural result of high cohesion, in that the functions work cooperatively within the module to satisfy their
functional concern

• This is actually good, because it mean fewer inter-module communications are needed

• Less cohesive modules tend to have a higher degree of inter-module coupling (among multiple
modules)

• This is a natural result of low cohesion, in that the functions are poorly organized, and need to work with
functions from other modules in order to satisfy their functional concern

• This is not good, because it mean a greater number of inter-module communications are needed

© Copyright 2022-2025 John G. Artus 5www.jgartus.net

Low Cohesion
Like-Functions Have No Organization

Module

High Cohesion
All Like-Functions Are Organized

Moderate Cohesion
Most Like-Functions Are Organized

This is the ideal

arrangement, but

is not always

achievable

To communicate,

a large number of

interfaces need

to be established

To communicate,

some like-

functional

elements must do

so using inter-

module interfaces

(across modules)

Benefits of High Cohesion

• Simplifies modification
• It is easier to make changes to a module’s behavior since all the related functionality is resident within

the module

• This will keep the area of impact limited

• Compare this to a design in which a certain functionality is spread across multiple modules, and each has
to be changed to achieve the desired change in behavior

• Easier to test the module
• Since such modules do not depend on other modules for their behavior, they are easier to test

• Changes are less prone to bugs
• Alternatively, when you are making changes across modules, it is easier to make mistakes

• Facilitates reuse
• Since such modules perform a single responsibility, they tend to be reused wherever there is such a need

• Leads to low coupling with other modules
• Because the functionality contained in a single module is tightly contained, integration with other

modules experiences fewer inter-module communications

• Reflects better quality of design
• The design indicates that any functional components in a module that are not directly related to the main

purpose have already been moved to some other module that better fits the functional purpose

www.jgartus.net© Copyright 2022-2025 John G. Artus 6

Functional Analysis Versus Functional Synthesis

• Functional Analysis
• At the beginning of a program, architects will likely not have a complete understanding of

the detailed functionality the system needs to perform in order to deliver the desired
behavior

• A key operation that is performed during functional analysis of the system problem, is
functional decomposition

• Functional decomposition allows the architect to break down the proposed system
functionality down to its elemental functional components

• The purpose of this operation is to discover the detailed functionality that will be needed
by the system to deliver the desired behavior

• Functional Synthesis
• Now that this detailed functionality has been exposed, it is the architect’s job to then

assemble the functional pieces in a way that delivers behavior in the most effective and
efficient way – this is functional synthesis (synthesizing the pieces together)

• The result is a new functional hierarchy of synthesis, which could be quite different from
the functional hierarchy of analysis

• Cohesion (and therefore coupling) is established during functional synthesis

• The challenge for the architect is to determine which of all the functional components
have a common purpose that makes them likely candidates to form a cohesive module

www.jgartus.net© Copyright 2022-2025 John G. Artus 7

Identifying the

Needed Functional

Elements of the

System

Devising the Solution

by Arranging the

Functional Elements

so as to exhibit High

Cohesion and Loose

Coupling

Functional Analysis and Synthesis within the Sys Arch Def’n Process

www.jgartus.net© Copyright 2022-2025 John G. Artus 8

• Within the overall Systems Engineering “Vee” exists the
System Architecture Definition Process, wherein the
development of the system architecture is performed

• The System Architecture Definition Process, has its own
little mini-Vee in which Functional Decomposition is
performed on the left side of the mini-Vee, and
Functional Synthesis is performed on the right side of the
mini-Vee

• The architect employs
experience and skill to integrate
the functional elements in a way
so as to promote high cohesion
and loose coupling

• The end result of this
integration activity is not the
system as a whole

• That integration activity is part
of the larger SE Vee

• The end result of this
integration activity is the system
functional architecture

• The system integration (part of
the larger SE Vee processes) will
be influenced by the allocation
of these functional elements to
system structural components
that will host and implement the
allocated functionality

System Architecture Definition Process

“Mini-Vee”

Systems Engineering Vee

The Result of Functional Decomposition During Functional Analysis

• During functional analysis, functional
decomposition is used as a tool to
decompose the top-level functionality of
the system (as known) to understand the
detailed functions that are needed to
deliver the final system behavior to the
stakeholder

• At the end of the process we do not yet
have a system

• All we have is a set of detailed functions

• They have not yet been assembled into a
working system

• That is the objective of Functional Synthesis

• The architect may very well discover
that detailed functionality that supports
one top-level function, may have a
great deal in common with lower-level
functions that support different top-
level functions

• The challenge is to smartly combine lower-
level functions that have significant
commonality to form modules

• This is where the architect’s skill comes into
play

www.jgartus.net© Copyright 2022-2025 John G. Artus 9

Single System Functional Statement

Top Function A

Function
A1

SubFunct
A1a

Component Funct
A1a1

Part Funct
A1a1.1

Part Funct
A1a1.2

Component Funct
A1a2

SubFunct
A1b

Function
A2

SubFunct
A2a

Function
A3

Top Function B

Function
B1

Function
B2

Top Function C

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a4.6

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A2a5.3

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
B1a2.7

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
C1c2.9

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
B2b5.2

The result of functional decomposition could be MANY low-level functions

(maybe not all at the same level as shown)

Functional Synthesis Results in the System Functional Hierarchy

• The full set of low-level functions (which
might not all be at the same level) are
used to then synthesize (assemble) the
final functional hierarchy that represents
the functional architecture of the
solution

• The solution hierarchy may be somewhat
similar to the hierarchy coming out of the
analysis process, but it does not have any
such requirement placed upon it

• The challenge is to smartly combine
lower-level functions that have
significant commonality to form modules

• This is where the architect’s skill comes
into play

• The hierarchy of these modules at
multiple levels constitutes the final
functional hierarchy of the system
solution

www.jgartus.net© Copyright 2022-2025 John G. Artus 10

Single System Functional Statement

Top Function A

Function
A1

SubFunct
A1a

Component Funct
A1a1

Part Funct
A1a1.1

Part Funct
A1a1.2

Component Funct
A1a2

SubFunct
A1b

Function
A2

SubFunct
A2a

Function
A3

Top Function B

Function
B1

Function
B2

Top Function C

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a4.6

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A2a5.3

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
B1a2.7

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
C1c2.9

Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
A1a1.2Part Funct

A1a1.2Part Funct
B2b5.2

The job is to identify commonality among all these functional components,

and combine them into modules at multiple levels

The solution functional hierarchy resulting from

synthesis may be close to the functional hierarchy

from analysis, but that is not a requirement

How to Achieve High Cohesion

• The desired top-level functionality of the system should be clearly defined in the top-level
functional requirements

• Establish top-level functions that clearly meet those requirements

• Decompose the established top-level functions down to levels that reveal the basic functions that
need to be combined to adequately support the top-level functional requirements

• Arrange the decomposed functions into functional modules that are focused on achieving a
particular functional goal

• As such a hierarchy is developed, it is critical to ensure that all functional components of a module implement
functionality that supports the same functionality goal of the module (that all functional components are
functionally related)

• The combining of functional components into a module should result in a focus of the module on performing a single
task

• Aim to minimize interaction of the subject module with other modules of the system at the same and other levels

• Continue such organization to group like-purposed modules together into larger modules, into a
multi-level hierarchy

• While there may be close similarities between this synthesized functional hierarchy and the hierarchy resulting from
functional decomposition during system analysis, there is no requirement for them to be identical

• If the job is done right, there will likely be some differences indicating that a deeper understanding of the functional
needs of the system has been achieved

www.jgartus.net© Copyright 2022-2025 John G. Artus 11

Taking Modularization Too Far

• Good cohesion means that a module has few responsibilities (it
does one thing well) and it has a simple interface

• So, you might think it a good thing to continue identifying
modules to the point that every module is represented by a
single function (the module does one simple thing and one
thing only)

• Taking modularization to this extent only makes matters worse
• Cohesion is actually reduced since the system functions have been broken up

and scattered to a large set of unrelated modules

• Breaking modules into the smallest possible elements will separate related
concepts and will lead to very low cohesion

• Such a degree of cohesion will inevitably increase the coupling between
modules to the maximum, since inter-module communications will have to
increase tremendously

• Cohesion is not something you can create automatically
• Cohesion is a process of discovery during synthesis of the architectural

components

• Part of the art of architecture is to determine what is the right amount of
modularization needed to provide the highest cohesion and loosest coupling

• It is difficult to reliably measured cohesion since determining how closely
individual functions relate to each other in fulfilling a functional requirement
is a judgement call made by the architect

© Copyright 2022-2025 John G. Artus 12www.jgartus.net

Module

High Cohesion
All Like-Functions Are Organized

Modularization Taken Too Far
Each Function is its Own Module

Finding the best

level of

“modularization”

requires skill

acquired over time

spent trying, failing,

and improving

Attempting to push

modularization too

far can result in

functionality spread

too thin – not the

ideal situation

Coupling

www.jgartus.net© Copyright 2022-2025 John G. Artus 13

Overview of Coupling

• Coupling is the degree of interdependence between functional
modules

• Uncoupled modules have no interdependence at all
• It is impossible to construct an uncoupled system that has any practical functional

behavior

• Modules with loose coupling work mostly independently of each other
• Normally, the goal is to achieve a system with loose coupling

• Two modules are tightly coupled if they share many inter-module
connections

• A tightly coupled system can deliver functional behavior, at a higher cost of
production and maintenance

• Modules with a single, well-defined purpose are easier to understand,
implement, and maintain

• The purpose of such modules is clear to understand

• Generally, coupling is a affected by cohesion
• If high cohesion is achieve, it is likely that loose coupling will be the result

www.jgartus.net© Copyright 2022-2025 John G. Artus 14

Uncoupled
No Inter-Module Dependencies

Loosely Coupled
Some Inter-Module Dependencies

Tightly Coupled
Many Inter-Module Dependencies

Advantages of Loose Coupling

•Loosely coupled modules are easier to develop
• Since they are independent of each other, they can developed and tested in parallel

• Such modules can be independently built and deployed, significantly reducing the deployment
time

•Overall, loose coupling reflects a higher quality of design
• Aim for designing components that are as independent as possible

•Coupling affects how the system is maintained
• Effectively, coupling is about how changing one component requires a change in another

component (dependence)

• The more inter-module dependencies there are, the more expensive it will be to implement a
change in functionality

www.jgartus.net© Copyright 2022-2025 John G. Artus 15

Disadvantages of Tight Coupling

• Tightly coupled components are difficult to change (impacting extensibility and
scalability)

• The developer needs to understand multiple modules and how they relate to each other

• You need to be careful in making changes to all the modules consistently

• This makes the system more error-prone

• Also, there is a need to build, test, and deploy each changed module, further increasing the development effort

• Tightly coupled modules are also difficult to test
• Testing a single module is difficult since it heavily depends on other modules

• Integration tests are also difficult to set up
• Overall the tests are fragile since a change in any one module could break the tests

• Debugging such modules is also complex because it needs all the dependent modules operating concurrently

• A tightly coupled module is less likely to be reused
• Because of interconnected dependencies, such a module does not perform anything useful on its own

• Hence, it rarely fits the purpose for someone else to reuse

• Also pulling it as a dependency is difficult since it brings in other dependent modules along with it

• Alternatively, under some circumstances, tight coupling has advantages
• In special circumstances involving one-of-a-kind, customized applications

• That may require very close association of multiple, unrelated modules for some special purpose, such as tight
packing of modules in extremely limited physical space

www.jgartus.net© Copyright 2022-2025 John G. Artus 16

How to Achieve Loose Coupling

• Modules should be as independent as possible
• Modules should communicate only via small, well-defined (“narrow”) interfaces

• The more one module has to “know” about another module, the higher is the coupling between them

• Looking at different kinds of systems and the way they manifest internal coupling, the
variations of this pattern are endless

• It's always the case that if you can reduce the coupling between a system's modules, you can reduce the overall
complexity of the system accordingly

• Among Systems Engineering best practices, as stated in many standards, it is key to
minimize the coupling between modules in order to master the product complexity

• Good coupling means that the system organization is clean and the dependencies are easy to understand

• Alternatively, bad coupling means that the system architecture is an entangled mess, and the dependencies are
hard to understand

• To achieve such minimization, a well-known method consists of using Coupling Matrices (also called N2 diagrams)
and then reorganize them to identify architectures with minimal coupling

• The coupling between modules concerns the dependencies between the modules

• These dependencies between the logical modules mainly stem from the functional interfaces

• First start by examining the functional dependencies
• Use them to develop a coupling matrix (N2 diagram)

• Examine the interdependencies of modules within the system organization as revealed by the N2 diagram

• Implement a re-allocation of functions to modules that minimizes coupling

• It is impossible to achieve full decoupling without damaging cohesion
www.jgartus.net© Copyright 2022-2025 John G. Artus 17

Cohesion and Coupling in Architecture Patterns

www.jgartus.net© Copyright 2022-2025 John G. Artus 18

Architectural Schemes Exemplifying Cohesion and Coupling

The following four figures on this slide and the next show the same elements with the same

dependencies
• In each of the four figures, the system elements are organized differently

• Related domain concepts are represented with the same color

www.jgartus.net© Copyright 2022-2025 John G. Artus 19

Organization Scheme: Low Cohesion, Tight Coupling
• System elements have no explicit boundaries

• There is no real fore-thought of promoting cohesion of any kind (low cohesion)
• Any occurrence of cohesion is purely coincidental

• Interfaces are established as the need for them is identified
• As a result, interfaces crisscross throughout the system (tight coupling)

• Such an architecture is also known as a “Big Ball of Mud”

Organization Scheme: High Cohesion, Tight Coupling
• System elements are organized into modules with lots of dependencies between them

• Although the modules are highly cohesive, they are cohesive by the wrong principle
• In this case, system elements are organized by something other than a domain relationship

• They are NOT with regard to fulfilling any functional goal of the parent subsystem

• A typical example is an organization in accordance with the principle of separation of

concerns, as shown in a Layered Architecture
• Layered Architecture is a design pattern that that organizes a system into a set of horizontal layers

and thus promotes clean separation of concerns

• In this architecture, each layer has a specific responsibility and communicates only with adjacent

layers

www.jgartus.net© Copyright 2022-2025 John G. Artus 20

Architectural Schemes Exemplifying Cohesion and Coupling

Organization Scheme: High Cohesion, Loose Coupling

• This system is organized according to the principle of functionality
• What matters are the functions that a business domain needs to implement in order to

succeed

• The domain defines the functional abstractions with a stable purpose

that drives the cohesion of system elements

• This is the main idea of the Domain-Driven Design
• Domain-Driven Design (DDD) is an approach that emphasizes system designs that reflect

a focus on functionality that addresses the concerns of the business domain

• The focus is on enhancing the cohesion of domain functionality

• An example of this kind of approach is provided in the next few slides
• The domain focus is on providing a multi-layered air defense against threatening aircraft

Organization Scheme: Low Cohesion, Loose Coupling

• Systems with this organization scheme are the result of incorrect

understanding of the domain and applying purely technical approaches to

decouple the modules in an arbitrary way

• In this scheme, interfaces exist everywhere with no abstraction

representing any kind of domain purpose

• Is it even possible to have such an architecture?

• Unfortunately, it is; and it is actually pretty common

Cohesion Versus Coupling

www.jgartus.net© Copyright 2022-2025 John G. Artus 21

Cohesion Versus Coupling

• Cohesion and coupling are related to each other
• Each can affect the level of the other

• Generally, high cohesion correlates with loose coupling
• A module having its elements tightly related to each other and serving a single purpose would rarely interact and

depend on other modules
• Thus, the system will have loose coupling with other modules

• Similarly, tight coupling could be a sign of low cohesion
• Modules could be heavily dependent on each other due to the elements spread across the multiple modules
• Such extensive interdependencies will result in low cohesion

www.jgartus.net© Copyright 2022-2025 John G. Artus 22

Cohesion Coupling

1 In cohesion, a component focuses on a performing single function In coupling, components are linked to other components

2 Cohesion is the degree to which the elements inside a component

belong together

Coupling is the degree of interdependence between the

components

3
Cohesion shows the component’s relative functional strength

Coupling shows the relative independence between the

components

4 A component with high cohesion contains elements that are tightly

related to each other and united in their purpose

Two components have high coupling (or tight coupling) if they

are closely connected and dependent on each other

5 A component is said to have low cohesion if it contains unrelated

elements

Components with low coupling among them work mostly

independently of each other

6 Highly cohesive components reflect higher quality of design Loose coupling reflects the higher quality of design

7
Cohesion shows the component’s relative functional strength

Coupling shows the relative independence between the

components

Summary

• Cohesion does not depend on the number of connections between
elements, which is what coupling is all about

• Cohesion is more about common functional purpose
• Cohesive modules tend to have a higher degree of coupling within the module, which is expected

and normal

• High cohesion and loose coupling help us reduce accidental complexity and
create modules with well-defined boundaries

• In practice, measures of coupling and cohesion are always interdependent
• As loose coupling is driven by high cohesion, we should strive for high cohesion in the first place
• That is, changing one variable always changes the other; it is impossible to optimize one without

degrading the other
• For example, modifying a system to improve the cohesion of its modules is a good thing to do

• But it generally results in having smaller modules than we had before and therefore more of them

• Adding more modules to a system tends to increase its overall coupling

• Conversely, if we try to improve (reduce) the coupling of a system by merging small modules
together into larger ones

• We would succeed in reducing the number of dependencies between modules

• But, the new modules will necessarily have to have more responsibilities than the previous ones, and thus
poorer cohesion

www.jgartus.net© Copyright 2022-2025 John G. Artus 23

Summary (continued)

•Note that it is never possible to actually have perfect decoupling
within a system

• That is only achieved when none of the components interact with each other
• That's not really a system, just an inert collection of components
• Coupling is to a certain extent a good thing and a completely necessary thing, and in fact it's

the thing that enables the functionality of the system
• It's only when it gets out of hand and begins to hamper productivity that it becomes a problem

• In the case of cohesion, on the other hand, it is possible to achieve
perfection

• For example, a class that contains just a single method is a perfectly cohesive component of its
system

• However, we're not going to want to take things to that extreme in practice
• Because of the surge in coupling it would incur

• A system made up of a large number of tiny components will tend to manifest a great amount of
coupling among them

• In a sense, coupling is a manifestation of what a system does, and
cohesion is a manifestation of what the system doesn't do

www.jgartus.net© Copyright 2022-2025 John G. Artus 24

Example: Semi-Autonomous Lawn Mowing System

www.jgartus.net© Copyright 2022-2025 John G. Artus 25

Cohesion and Coupling

•Cohesion addresses Intra-Module Binding (within the same Module)
• Relative to Tier 1, the Tier 2 functions display high cohesion

• They all support the parent function

•Coupling addresses Inter-Module Binding (Module-to-Module)
• The Tier 2 functions display low coupling

• The functions are fairly independent of each other

• They each perform functions that have little overlap

• Therefore, the amount of inter-module interaction (coupling) is reduced

Mow Grass Semi-Autonomously

Mow Grass
Monitor

Environment
Navigate

Communicate

With User

Monitor

System Health

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

Tier 2

Tier 1

www.jgartus.net© Copyright 2022-2025 John G. Artus 26

https://www.mdpi.com/2624-7402/1/3/33/htm

Cohesion and Coupling

• Coupling addresses Inter-Module Binding (Module-to-Module)

• The Tier 3 functions display low coupling

• The functions are fairly independent of each other

• They each perform functions that have little overlap

• Cohesion addresses Intra-Module Binding (within the same Module)

• Relative to the Tier 2 parent function, the Tier 3 functions display
high cohesion

• They all support the parent function

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

Mow Grass Semi-Autonomously

Mow Grass

Control Blade

Rotation

Speed

Evaluate

Cutting

Performance

Control Blade

Height

Control

Mower Speed

Monitor

Environment
Navigate

Communicate

With User

Monitor

System Health

Tier 3

Tier 2

Tier 1

www.jgartus.net© Copyright 2022-2025 John G. Artus 27

https://www.mdpi.com/2624-7402/1/3/33/htm

Poor Cohesion

• Do these Tier 2 functions exhibit high cohesion?
• No, they are not all supporting the goals of the parent

function

Mow Grass Semi-Autonomously

Mow Grass
Monitor

Environment
Navigate

Print

Receipt

Change TV

Channel

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

Tier 2

Tier 1

www.jgartus.net© Copyright 2022-2025 John G. Artus 28

https://www.mdpi.com/2624-7402/1/3/33/htm

Good (Loose) Coupling

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

• Coupling is good in this example because the Tier 2 functions

are highly independent (their functions do not overlap)

• As a result, the communication needed between the Tier 2

functions in minimized

• This leads to fewer interfaces across Tier 2 elements

• There is also very little communication needed between the

Tier 3 functions across Tier 2

www.jgartus.net© Copyright 2022-2025 John G. Artus 29

Evaluate Cutting

Performance

Mow Grass Semi-Autonomously

Mow Grass
Monitor

Environment
Navigate

Communicate

With User

Monitor

System Health

Control Blade

Rotation Speed

Monitor Grass

Density

Control Blade

Height

Manage Encounter

With Obstacle

Monitor Weather

Monitor Job

Completion

Monitor Obstacle-

Locating Signals

Locate Mower

Position

Map Obstacles

Monitor Lawn Grade

Monitor Yard

Boundary

Process User

Commands

Monitor Power Level

Monitor Fuel Level

Monitor Vibration

Level

Monitor Status Of

Key Components

Plan Mowing Path

Control Mower

Speed

Report System

Status

Tier 3

Tier 2

Tier 1

https://www.mdpi.com/2624-7402/1/3/33/htm

Low Cohesion, Poor (Tight) Coupling

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

www.jgartus.net© Copyright 2022-2025 John G. Artus 30

Evaluate

Cutting

Performance

Mow Grass Semi-Autonomously

Mow Grass
Monitor

Environment

Monitor Job

Completion

Control Mower

Speed

Control Blade

Height

Monitor

Weather

Control Blade

Rotation Speed

Monitor

Obstacle-

Locating Signals

Monitor Grass

Density

• The Tier 3 functions shown here exhibit low cohesion because

they are not all working together to fulfill the goals of their

parent Tier 2 functions

• Coupling is poor in this example because some Tier 3 functions

are poorly allocated to Tier 2 parent functions, leading to

• An increase in the number of interfaces between these

two Tier 2 functions

• Poor performance due to the increased data traffic across

networks

• Tight coupling and the associated interdependence of functions

means that a failure in one dependent function can severely

impact another dependent function

https://www.mdpi.com/2624-7402/1/3/33/htm

Example: Multi-Layer Air Defense System

www.jgartus.net© Copyright 2022-2025 John G. Artus 31

www.jgartus.net© Copyright 2022-2025 John G. Artus 32

Components of the Layered Air Defense Architecture

Surface-To-Air Missile

(SAM)

Anti-Aircraft Artillery

(AAA)

Strategic Missile System

(SMS)

Mobile Command

Regional Command Center

Theater Command Center

Component elements are

provided in the numbers

required to provide the

desired air volume coverage

Lowest Layer

Upper Layer

Middle Layer

This example is presented by describing the system structural components

This is done due to the fact that the functionality of the system closely resembles the structural identity of its components

www.jgartus.net© Copyright 2022-2025 John G. Artus 33

Battlefield Layout of Defense Equipment Configuration

Upper Level Weapon Control

Upper-to-Middle Command Link

Middle Level Weapon Control

Middle-to-Lower Command Link

Lower Level Weapon Control

Incoming Air Threat

• Shown is a completely notional and

fictional air defense configuration

• Additional equipment such as radar

sensors not shown to avoid

overcomplicating the story

www.jgartus.net© Copyright 2022-2025 John G. Artus 34

Hierarchical Configuration of Three-Layer Structure

HIGH COHESION – All Subordinate Units Support ONLY their Parent Unit

LOOSE COUPLING – There are NO cross-organizational communications

Top Layer
Middle Layer

Lower Layer

• In a truly centralized

configuration such as this,

EVERYONE is bound to follow

their Commander’s

instructions

• NOONE takes any

independent action

• The Commanders direct the

engagement by issuing

commands to subordinates

• This is an effective

arrangement until a

commander or a command

link is taken out

• At this point, the

disconnected elements are

useless, as they cannot make

decisions on their own

For those curious, this is only one simplified view of a complete system

See next slide for a larger perspective

www.jgartus.net© Copyright 2022-2025 John G. Artus 35

Additional Components of the Layered Air Defense Architecture

Medium-Range Radar

(SAM)

Short-Range Radar

(AAA)

Long Range Radar

(SMS)

Mobile Command

Regional Command Center

Theater Command Center

Component elements are

provided in the numbers

required to provide the

desired air volume coverage

Lowest Layer

Upper LayerMiddle Layer

A Complete Air Defense System Would Have Many More Elements

• The Air Defense System example shown is grossly oversimplified to keep the detail under control
and the content understandable

• An actual such system would require many, many more elements to provide realistic capability

• This includes:
• The weapon systems already addressed, PLUS ...

• Sensor systems needed to detect and track the incoming air threat

• Air-based air defense systems (aircraft assigned to attack the incoming air threat)

• Electronic Warfare Countermeasures equipment to jam the enemy’s sensors

• Electronic Warfare Counter-Countermeasures equipment to jam the enemy’s jamming equipment

• Communication units to connect all the components indicated

• The number of all these elements discussed needed to provide complete coverage of the defendable area

• In additional, further complications in a real system arise due to
• Many, many different versions of the basic equipment due to improvements made to the systems over time

• Reduced performance levels due to equipment requiring tuning or maintenance

• This all being said to ensure that the student does not get the wrong impression that these kinds of
systems are simple, clean, and fully-functional all the time (they are not)

www.jgartus.net© Copyright 2022-2025 John G. Artus 36

This never-ending counter-counter-countermeasures cat-and-mouse game has been

ongoing in modern warfare ever since electronics entered the battlefield in WW II

Measuring Cohesion

www.jgartus.net© Copyright 2022-2025 John G. Artus 37

Measuring Cohesion

• The degree of cohesion of a module can be expressed by the following formula:

• where

• coh is the measure of cohesion as a function of

• m, the module under investigation

• k, the “key” or functional commonality of interest among the functional elements

• 𝑁𝑚
𝑘 is the number of functional elements cohesive by the key within the module

• 𝑁𝑘 is the total number of functional elements in the entire system cohesive by the key

• 𝑁𝑚 − 𝑁𝑚
𝑘 is the number of functional elements not cohesive by the key inside the module

• Obviously, the maximal cohesion of a module is 1

• This is what we strive for

www.jgartus.net© Copyright 2022-2025 John G. Artus 38

The “key” is some aspect of system

functionality which forms the basis for

establishing functional commonality

among functional elements

Functional elements of the same “key”

should ideally form functional modules

𝑐𝑜ℎ 𝑚, 𝑘 =
𝑁𝑚
𝑘

𝑁𝑘 + (𝑁𝑚 − 𝑁𝑚
𝑘)

Examples of Measuring Cohesion

• Here are examples of usage of the formula for determining functional cohesion

of a module of interest

• In these examples, the module under consideration is shown by the dashed

circle

• In example A, the cohesion of the module is 1, although it is not recommended

to have functional modules that comprise only a single functional element

• In example B, a functional element of the same key exists outside of the

module of interest, indicating that the module is less than ideally cohesive

• In example C, the condition is worse since a functional element of a foreign key

exists within the module of interest

• In example D, we have achieve a more ideal solution, since all functional

elements of a like key exist within a single module

• In example E, cohesion is again compromised by the existence of a functional

element of a foreign key within the module of interest

• In example F, cohesion is the worst of the examples since not only does a

functional element of a foreign key exist within the module of interest, but

also, a functional element of the desired key exists outside of the module of

interest
www.jgartus.net© Copyright 2022-2025 John G. Artus 39

𝑐𝑜ℎ 𝑚, 𝑘 =
𝑁𝑚
𝑘

𝑁𝑘 + (𝑁𝑚 − 𝑁𝑚
𝑘)

1 / (1 + 1 – 1) = 1

1 / (2 + 1 – 1) = 0.5

2 / (4 + 3 – 2) = 0.4

2 / (2 + 2 – 2) = 1

1 / (1 + 2 – 1) = 0.5

1 / (2 + 2 – 1) = 0.33...

A

C

B

D

E

F

Measuring Coupling and Instability

www.jgartus.net© Copyright 2022-2025 John G. Artus 40

Measuring Coupling

• Coupling metrics help engineers determine the complexity of their
architecture based on the dependencies between modules

• These metrics reveal how the modules are connected, the strength of their
dependencies and the stability of the overall design

• Tight coupling makes it difficult to alter a single module without causing
direct changes to others

• Updates and tests are all complicated by tight coupling

• A system becomes loosely coupled if individual modules require little or no
knowledge of the surrounding modules to operate

• As such, teams can build systems with modular components by using
functional modules that can act and evolve independently

• This measurement technique is not absolute, but can be used as a tool to
measure the relative degree of coupling between alternative design
approaches

www.jgartus.net© Copyright 2022-2025 John G. Artus 41

The Fenton and Melton Metric

•The Fenton and Melton metric is commonly used to measure
the degree of coupling, C, between modules a and b:

•The variable n represents the actual number of direct
interconnections that exist between modules a and b

•The variable i indicates the highest level of coupling type that
exists between modules a and b
•Engineers can determine i by examining each of those modules and
identifying the tightest dependency relationship, with 0
representing the lowest level of dependency and 5 representing the
highest (see next slide)

www.jgartus.net© Copyright 2022-2025 John G. Artus 42

C(a, b) = i + n / (n + 1)

Dependency Scale

• Fenton and Melton identified the following scale for measuring coupling

www.jgartus.net© Copyright 2022-2025 John G. Artus 43

Measure of

Coupling (i)

Coupling

Type
Meaning for Software Meaning for Systems

5 Content

Coupling

Module X refers to the inside of Module Y

It branches into, changes data, or alters a statement in Module Y

Module X affects the functional behavior of Module Y

4 Common

Coupling

Modules X and Y refer to the same global data

This type of coupling is undesirable because if the format of the

global data needs to be changed then all common coupled

modules must also be changed

Modules X and Y refer to the same global data

3 Control

Coupling

Module X passes a parameter to Module Y with the intention of

controlling its behavior

Module X passes a parameter to Module Y with the

intention of controlling its behavior

2 Stamp

Coupling

Modules X and Y accept the same record type as a parameter

This type of coupling may manufacture an interdependency

between otherwise unrelated modules

Modules X and Y accept the same record type as a

parameter

This type of coupling does not constitute a strong

interdependency

1 Data

Coupling

Modules X and Y communicate by parameters,

each one being either a single data element or a homogeneous

set of data items that do not incorporate any control element

This type of coupling is necessary for any communication

between modules

Modules X and Y communicate by parameters

This type of coupling is necessary for any

communication between modules

0 No

Coupling

Modules X and Y have no communication whatsoever

They are totally independent

Modules X and Y have no communication whatsoever

They are totally independent

Measuring Instability

• Instability is a metric used to measure the relative susceptibility of a
component to breaking changes. Instability indicates that a software
class, package, subsystem or other given module will be significantly
impacted by changes elsewhere

• Instability is calculated according to the following formula, where I
represents instability:

• I = Ce / (Ce + Ca)

•To accurately calculate instability, engineers must also delineate
the nature of a module’s dependency relationships by measuring
two major types of coupling

• Efferent Coupling

• Afferent Coupling

www.jgartus.net© Copyright 2022-2025 John G. Artus 44

Efferent Coupling and Afferent Coupling

• Efferent Coupling
• Efferent coupling is a measure of the number of other modules that a given

module (Module Y in the example) depends on to operate

• A sizable level of efferent coupling indicates that a module may be difficult to
observe, reuse, test, and maintain

• For instance, it's unlikely that engineers will be able to update a module with a
great deal of efferent coupling without also updating each module it depends on

• In most cases, engineers will want to decompose these dependencies, which will
help instill the single functional responsibility principle needed to loosen coupling

• Afferent Coupling
• Afferent coupling measures the number of other modules that are dependent on a

given module (Module Y in the example)

• While it still may make a module difficult to change, high afferent coupling is not
necessarily a bad thing, as it can invariably occur in certain areas of a system

• However, it is a poor architecture practice to maintain extensive afferent coupling
across a large number of system functions

• Ideally, a module with bundles of afferent coupling should remain small and take
on as few functional responsibilities (requirements) as possible

www.jgartus.net© Copyright 2022-2025 John G. Artus 45

Arrows indicate a dependency

Module at tail end of arrow(s)

depends on module(s) at head end

Efferent and Afferent Coupling Example

•Here, the efferent coupling (Ce)
and the afferent coupling (Ca) of
Module A, is illustrated

•As the diagram shows, Module Y is
dependent on four other modules:
X, Z, B, and C

•Meanwhile, there is a single
module - Module A - that depends
on Module Y

• In this case, the efferent coupling
of Module Y has a value of 4, while
the value of its afferent coupling
is 1

www.jgartus.net© Copyright 2022-2025 John G. Artus 46

Module A

Module ZModule YModule X

Module CModule B

Module Y is dependent on four other

components: X, Z, B, and C

The Efferent Coupling of Module Y is 4

Module A is dependent on Module Y

The Afferent Coupling of Module Y is 1

Instability Example

• The instability formula will produce a value for I that ranges from 0 to 1

• Modules are considered to be generally stable when this calculation places
the value of I closer to 0

• Modules with tighter coupling will usually produce a value closer to 1,
which indicates that it is highly susceptible to changes that cause the
module to fail

• Using the example class from earlier, we can calculate the instability of
Module A by:

• I = 4 / (4 + 1)

• Hence, the instability of Module A is 0.8, indicating that it is particularly
susceptible to changes that could cause the module to fail

• While the module is not completely incapable of independent changes, it
still maintains enough dependencies to prohibit modularity

www.jgartus.net© Copyright 2022-2025 John G. Artus 47

References

1. Pagade, G (2021). Difference Between Cohesion and Coupling. Retrieved from
https://www.baeldung.com/cs/cohesion-vs-coupling

2. Nelson, J (2014). Coupling And Cohesion: Overview. Retrieved from
https://github.com/jn123456789/coupling_and_cohesion

3. Java T Point (2022). Coupling and Cohesion. Retrieved from
https://www.javatpoint.com/software-engineering-coupling-and-cohesion

4. Samares Engineering (2020). Coupling optimization of logical architecture using
genetic algorithm. Retrieved from https://www.samares-
engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-
architecture-using-genetic-algorithm/

5. Sandoval, K (2020). The Difference Between Tight Coupling and Loose Coupling.
Retrieved from https://nordicapis.com/the-difference-between-tight-coupling-
and-loose-
coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a
%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20d
etached%20from%20each%20other

www.jgartus.net© Copyright 2022-2025 John G. Artus 48

https://www.baeldung.com/cs/cohesion-vs-coupling
https://github.com/jn123456789/coupling_and_cohesion
https://www.javatpoint.com/software-engineering-coupling-and-cohesion
https://www.samares-engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-architecture-using-genetic-algorithm/
https://www.samares-engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-architecture-using-genetic-algorithm/
https://www.samares-engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-architecture-using-genetic-algorithm/
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other

References (continued)

6. Tulka, T (2020). How Cohesion and Coupling Correlate. Retrieved from
https://blog.ttulka.com/how-cohesion-and-coupling-correlate/

7. Patterson, A., Yang, Y., Norris, W. (2019). Development of User-Integrated Semi-
Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and
Proposed Architecture. Retrieved from https://www.mdpi.com/2624-
7402/1/3/33

8. Kanjilal, J. (2020) The Basics of Software Coupling Metrics and Concepts.
Retrieved from: https://www.techtarget.com/searchapparchitecture/tip/The-
basics-of-software-coupling-metrics-and-concept

9. Fenton, N., and Melton, A. (1990) Deriving Structurally Based Software
Measures. Retrieved from: https://sci-hub.st/10.1016/0164-1212(90)90038-n

www.jgartus.net© Copyright 2022-2025 John G. Artus 49

https://blog.ttulka.com/how-cohesion-and-coupling-correlate/
https://www.mdpi.com/2624-7402/1/3/33
https://www.mdpi.com/2624-7402/1/3/33
https://www.techtarget.com/searchapparchitecture/tip/The-basics-of-software-coupling-metrics-and-concept
https://www.techtarget.com/searchapparchitecture/tip/The-basics-of-software-coupling-metrics-and-concept
https://sci-hub.st/10.1016/0164-1212(90)90038-n

Image Sources

• AAA System
• http://www.armaco.bg/userfiles/images/ARMAAGZU23-n.png

• Regional Defense System
• https://www.ausairpower.net/PVO-S/5P73-Launcher-Deployed-MiroslavGyurosi-1S.jpg

• Long Range Defense System
• https://en.euractiv.eu/wp-content/uploads/sites/2/2022/12/ree.jpg

• Mobile Comms Vehicle
• https://api.army.mil/e2/c/images/2018/07/26/525190/original.jpg

• Regional Command Center
• https://api.army.mil/e2/c/images/2015/09/11/408981/original.jpg

• Theater Command Center
• https://www.afcea.org/signal-media/crown-jewel-program-modernizes-air-operations

• Terrain
• https://www.aiviagroup.com/mapping-steep-terrain-and-dense-vegetation/

• Air Threat Aircraft
• https://www.popsci.com/wp-content/uploads/2021/04/21/6557886.jpeg

• Long Range Radar
• https://mavink.com/explore/1S12-Long-Track

• Medium-Range Radar
• https://www.falcon-lounge.com/falcon-bms-essentials/threats-guide/surface-to-air-missile-sa-3/

• Short-Range Radar
• https://www.pinterest.com/pin/159314905555255037/

www.jgartus.net© Copyright 2022-2025 John G. Artus 50

http://www.armaco.bg/userfiles/images/ARMAAGZU23-n.png
https://www.ausairpower.net/PVO-S/5P73-Launcher-Deployed-MiroslavGyurosi-1S.jpg
https://en.euractiv.eu/wp-content/uploads/sites/2/2022/12/ree.jpg
https://api.army.mil/e2/c/images/2018/07/26/525190/original.jpg
https://api.army.mil/e2/c/images/2015/09/11/408981/original.jpg
https://www.afcea.org/signal-media/crown-jewel-program-modernizes-air-operations
https://www.aiviagroup.com/mapping-steep-terrain-and-dense-vegetation/
https://www.popsci.com/wp-content/uploads/2021/04/21/6557886.jpeg
https://mavink.com/explore/1S12-Long-Track
https://www.falcon-lounge.com/falcon-bms-essentials/threats-guide/surface-to-air-missile-sa-3/
https://www.pinterest.com/pin/159314905555255037/

	Slide 1: Cohesion And Coupling
	Slide 2: Overview of Cohesion and Coupling
	Slide 3: Index
	Slide 4: Cohesion
	Slide 5: Overview of Cohesion
	Slide 6: Benefits of High Cohesion
	Slide 7: Functional Analysis Versus Functional Synthesis
	Slide 8: Functional Analysis and Synthesis within the Sys Arch Def’n Process
	Slide 9: The Result of Functional Decomposition During Functional Analysis
	Slide 10: Functional Synthesis Results in the System Functional Hierarchy
	Slide 11: How to Achieve High Cohesion
	Slide 12: Taking Modularization Too Far
	Slide 13: Coupling
	Slide 14: Overview of Coupling
	Slide 15: Advantages of Loose Coupling
	Slide 16: Disadvantages of Tight Coupling
	Slide 17: How to Achieve Loose Coupling
	Slide 18: Cohesion and Coupling in Architecture Patterns
	Slide 19: Architectural Schemes Exemplifying Cohesion and Coupling
	Slide 20: Architectural Schemes Exemplifying Cohesion and Coupling
	Slide 21: Cohesion Versus Coupling
	Slide 22: Cohesion Versus Coupling
	Slide 23: Summary
	Slide 24: Summary (continued)
	Slide 25: Example: Semi-Autonomous Lawn Mowing System
	Slide 26: Cohesion and Coupling
	Slide 27: Cohesion and Coupling
	Slide 28: Poor Cohesion
	Slide 29: Good (Loose) Coupling
	Slide 30: Low Cohesion, Poor (Tight) Coupling
	Slide 31: Example: Multi-Layer Air Defense System
	Slide 32: Components of the Layered Air Defense Architecture
	Slide 33: Battlefield Layout of Defense Equipment Configuration
	Slide 34: Hierarchical Configuration of Three-Layer Structure
	Slide 35: Additional Components of the Layered Air Defense Architecture
	Slide 36: A Complete Air Defense System Would Have Many More Elements
	Slide 37: Measuring Cohesion
	Slide 38: Measuring Cohesion
	Slide 39: Examples of Measuring Cohesion
	Slide 40: Measuring Coupling and Instability
	Slide 41: Measuring Coupling
	Slide 42: The Fenton and Melton Metric
	Slide 43: Dependency Scale
	Slide 44: Measuring Instability
	Slide 45: Efferent Coupling and Afferent Coupling
	Slide 46: Efferent and Afferent Coupling Example
	Slide 47: Instability Example
	Slide 48: References
	Slide 49: References (continued)
	Slide 50: Image Sources

