hn G. Artus

BSEE
MSSE
INCOSE ESEP

Overview of Cohesion and Coupling

» Cohesion and coupling are common concepts in designing modular
systems

» Cohesion and coupling are defined in terms of a system and the inter-module and
intra-module relationships among a system’s functional components

* The terms cohesion and coupling are deliberately chosen to be
ambiguous and abstract, because the concepts are abstract

» They each manifest in some form, within any kind of system we might care to
consider, in accordance with the skill of the architect to synthesize the
individual, lower-level functions cohesively into the same module

» Generally, it is the goal of the architect to achieve high cohesion
and loose coupling

» High cohesion indicates modules whose functional components relate closely with
each other in terms of them all working to fulfill common functional objectives
of the parent module

» Since the functional components are so closely related, most of the information needs will be
satisfied through intra-module communications (within the same module)

» Loose coupling indicates that there is less need for modules to communicate with
each other in order to support the information needs of the module’s functional
components

» This means that the number of intra-module communications (among different modules) is reduced,
since highly cohesive functions within a module get most of what they need from within the module

* The opposite is tight coupling in which modules are tightly coupled due to the poor placement of
functional components within modules that require them to conduct extensive inter-module (module-
to-module) communications to satisfy their information needs

© Copyright 2022-2025 John G. Artus

Less-Than-Ideal Cohesion

1 Some Like-Functions Are Mis-Organized

Results in more
inter-module
communications

www.jgartus.net 2

Index

Y

A
T

SLE
I;A’:’/I%fllﬁlil

www.jgartus.net 3

Overview of Cohesion

Cohesion is the degree to which the functional components of a system support the functional
objectives of a single functional “module”
+ A “module” can be considered to be the hierarchical functional parent of the functions grouped together
» A module with high cohesion contains elements that are highly related to each other and united in their purpose

Cohesion is an intra-module concept (within the same module)

A highly-cohesive module is generally stable in the face of changes made to other modules
» This is due to the fact that highly cohesive modules tend to be more independent of each other
» Such greater independence tends to isolate one module from changes implemented in other modules

High cohesion means that a module has a lesser number of concerns to deal with, since the
module is tightly focused on its objective (it does one thing well) and its interfaces are simpler

Low cohesion means that a module has a greater number of concerns to deal with (it tries to
do too many things) due to the fact that its functions are varied in purpose, and/or it has more
complex interfaces

Highly cohesive modules tend to have a higher degree of intra-module coupling (internal to the
module)

» This is a natural result of high cohesion, in that the functions work cooperatively within the module to satisfy their
functional concern

» This is actually good, because it mean fewer inter-module communications are needed

Less cohesive modules tend to have a higher degree of inter-module coupling (among multiple
modules)

» This is a natural result of low cohesion, in that the functions are poorly organized, and need to work with
functions from other modules in order to satisfy their functional concern

» This is not good, because it mean a greater number of inter-module communications are needed

© Copyright 2022-2025 John G. Artus

To communicate,
a large number of
interfaces need
to be established

To communicate,
some like-
functional

elements must do

so using inter-
module interfaces

(across modules)

This is the ideal
arrangement, but
is not always
achievable

Low Cohesion
Like-Functions Have No Organizati

www.jgartus.net

N 71 G

Benefits of High Cohesion N arTUS

/ Systems Engineering

 Simplifies modification
. I’%is eas(je{' to make changes to a module’s behavior since all the related functionality is resident within
the module

» This will keep the area of impact limited

» Compare this to a design in which a certain functionality is spread across multiple modules, and each has
to be changed to achieve the desired change in behavior

» Easier to test the module
» Since such modules do not depend on other modules for their behavior, they are easier to test

* Changes are less prone to bugs
 Alternatively, when you are making changes across modules, it is easier to make mistakes

» Facilitates reuse
» Since such modules perform a single responsibility, they tend to be reused wherever there is such a need

* Leads to low coupling with other modules

» Because the functionality contained in a single module is tightly contained, integration with other
modules experiences fewer inter-module communications

* Reflects better quality of design

* The design indicates that any functional components in a module that are not directly related to the main
purpose have already been moved to some other module that better fits the functional purpose

© Copyright 2022-2025 John G. Artus www.jgartus.net 6

Functional Analysis Versus Functional Synthesis (Y ARTUS

/ Systems Engineering

 Functional Analysis

» At the beginning of a program, architects will likely not have a complete understanding of
tbheh detailed functionality the system needs to perform in order to deliver the desired
ehavior

» A key operation that is performed during functional analysis of the system problem, is
functional decomposition

» Functional decomposition allows the architect to break down the proposed system
functionality down to its elemental functional components

» The purpose of this operation is to discover the detailed functionality that will be needed
by the system to deliver the desired behavior

 Functional Synthesis

» Now that this detailed functionality has been exposed, it is the architect’s job to then
assemble the functional pieces in a way that delivers behavior in the most effective and
efficient way - this is functional synthesis (synthesizing the pieces together)

» The result is a new functional hierarchy of synthesis, which could be quite different from
the functional hierarchy of analysis

» Cohesion (and therefore coupling) is established during functional synthesis

» The challenge for the architect is to determine which of all the functional components
have a common purpose that makes them likely candidates to form a cohesive module

© Copyright 2022-2025 John G. Artus www.jgartus.net 7

_
Functional Analysis and Synthesis within the Sys Arch Def’n Process

~ « Within the overall Systems Engineering “Vee” exists the “. i
System Architecture Definition Process, wherein the L Systems Engineering Vee Wit

Mission Analysis Operation

development of the system architecture is performed s

Stakeholder

» The System Architecture Definition Process, has its own asvs beirn e
little mini-Vee in which Functional Decomposition is System
performed on the left side of the mini-Vee, and " befinition
Functional Synthesis is performed on the right side of the YR .. e
mini-Vee N etmiton L /erification

| ——— . —

) 1 De iign
The al:'ChlteCt emp.loys . System Architecture Definition Process HEf fition
experience and skill to integrate

“Mini-Vee” bW B
the functional elements in a way ' " Implementation
so as to promote high cohesion S T

and loose coupling '

» The end result of this
integration activity is not the
system as a whole

» That integration activity is part
of the larger SE Vee

» The system integration (part of
the larger SE Vee processes) will
be influenced by the allocation
of these functional elements to
system structural components
that will host and implement the

 The end result of this NE=Ey allocated functionalit
integration activity is the system AL clemens g y

functional architecture

© Copyright 2022-2025 John G. Artus www.jgartus.net 8

s

The Result of Functional Decomposition During Functional Analysis

Level 1

7
/// uring functional analysis, functional

decomposition is used as a tool to
~ decompose the top-level functionality of
the system (as known) to understand the
detailed functions that are needed to

/ 7 % Fi i Fi i F i F i
deliver the final system behavior to the FESEEER

stakeholder

Level 4 SubFunct| |SubFunct|| |SubFunct Function
» At the end of the process we do not yet
el Level 5 -
» All we have is a set of detailed functions Alal Ala2
* They have not yet been assembled into a Part Funct
working system Level 6 —
» That is the objective of Functional Synthesis
, . Aa1.2
» The architect may very well discover
that detailed functionality that supports

one top-level function, may have a
great deal in common with lower-level

funcions tat support diferent o ey
L e % F%r?“i:'m me Fﬂmﬁzﬂm F’mﬁzﬂm
evel 1u 1 ve S1gNniri

commonality to form modules

« This is where the architect’s skill comes into iﬁﬂm EW EW iﬁﬂm EW
Part Funct Part Funct Part Funct Part Funct Part Funct

play Alad.6 A2a5.3 B1a2.7 B2b5.2 C1c2.9

Level 2

The result of functional decomposition could be MANY low-level functions
maybe not all at the same level as shown

© Copyright 2022-2025 John G. Artus www.jgartus.net

)

s

Functional Synthesis Results in the System Functional Hierarchy

%%

/I' he full set of low-level functions (which

~might not all be at the same level) are
used to then synthesize (assemble) the
final functional hierarchy that represents
the functional architecture of the
solution

» The solution hierarchy may be somewhat
similar to the hierarchy coming out of the
analysis process, but it does not have any
such requirement placed upon it

» The challenge is to smartly combine
lower-level functions that have
significant commonality to form modules

» This is where the architect’s skill comes
into play

» The hierarchy of these modules at
multiple levels constitutes the final
functional hierarchy of the system
solution

© Copyright 2022-2025 John G. Artus

Flm
o
W

A2a5.3

el

Fﬂm
s, I

i
FIMI Fﬂm

B1a2.7 B2b5.2

Eﬂlmﬁl
L
L

Ala4.6

Fm
iz

C1c2.9

The job is to identify commonality among all these functional components,
and combine them into modules at multiple levels

Level 1

Level 2

Function Function Function Function
Level 3 ————

Function
B2

SubFunct| |SubFunct|| [SubFunct
Level 4
— | Component Funct | |Component Funct
Level 5
Ala1.1
Ala1.2

The solution functional hierarchy resulting from
synthesis may be close to the functional hierarchy

Level 6 — : : :
from analysis, but that is not a requirement

www.jgartus.net 10

How to Achieve High Cohesion N7z 70s

/ Systems Engineering

* The desired top-level functionality of the system should be clearly defined in the top-level
functional requirements

 Establish top-level functions that clearly meet those requirements

» Decompose the established top-level functions down to levels that reveal the basic functions that
need to be combined to adequately support the top-level functional requirements

» Arrange the decomposed functions into functional modules that are focused on achieving a
particular functional goal
« As such a hierarchy is developed, it is critical to ensure that all functional components of a module implement
functionality that supports the same functionality goal of the module (that all functional components are
functionally related)

» The combining of functional components into a module should result in a focus of the module on performing a single
task
» Aim to minimize interaction of the subject module with other modules of the system at the same and other levels

» Continue such organization to group like-purposed modules together into larger modules, into a

multi-level hierarchy

« While there may be close similarities between this synthesized functional hierarchy and the hierarchy resulting from
functional decomposition during system analysis, there is no requirement for them to be identical

* |f the job is done right, there will likely be some differences indicating that a deeper understanding of the functional
needs of the system has been achieved

© Copyright 2022-2025 John G. Artus www.jgartus.net 11

Taking Modularization Too Far

» Good cohesion means that a module has few responsibilities (it
does one thing well) and it has a simple interface

\/ Systems Engineering A

» So, you might think it a good thing to continue identifying AL Lk Funttons et Orta
modules to the point that every module is represented by a .
single function (the module does one simple thing and one et of
th-ing Only) “modularization”

requires skill
acquired over time

 Taking modularization to this extent only makes matters worse RS

» Cohesion is actually reduced since the system functions have been broken up IO
and scattered to a large set of unrelated modules

» Breaking modules into the smallest possible elements will separate related
concepts and will lead to very low cohesion

» Such a degree of cohesion will inevitably increase the coupling between Modularization Taken Too Far
modules to the maximum, since inter-module communications will have to Each Function is its Own Module __}
increase tremendously ()

 Cohesion is not something you can create automatically sl et

+ Cohesion is a process of discovery during synthesis of the architectural PRt
Components too thin - not the

 Part of the art of architecture is to determine what is the right amount of ideal situation
modularization needed to provide the highest cohesion and loosest coupling

» It is difficult to reliably measured cohesion since determining how closely
individual functions relate to each other in fulfilling a functional requirement
is a judgement call made by the architect

© Copyright 2022-2025 John G. Artus

www.jgartus.net 12

Overview of Coupling \¥F1rrus

/ ‘ Systems Engineering

» Coupling is the degree of interdependence between functional
modules

* Uncoupled modules have no interdependence at all

» |t is impossible to construct an uncoupled system that has any practical functional
behavior

* Modules with loose coupling work mostly independently of each other
» Normally, the goal is to achieve a system with loose coupling

» Two modules are tightly coupled if they share many inter-module
connections

» A tightly coupled system can deliver functional behavior, at a higher cost of
production and maintenance

* Modules with a single, well-defined purpose are easier to understand,
implement, and maintain
» The purpose of such modules is clear to understand

 Generally, coupling is a affected by cohesion
» |f high cohesion is achieve, it is likely that loose coupling will be the result

© Copyright 2022-2025 John G. Artus www.jgartus.net 14

Advantages of Loose Coupling \¥Frrus

*Loosely coupled modules are easier to develop

* Since they are independent of each other, they can developed and tested in parallel
» Such modules can be independently built and deployed, significantly reducing the deployment
time
* Overall, loose coupling reflects a higher quality of design
» Aim for designing components that are as independent as possible

e Coupling affects how the system is maintained

» Effectively, coupling is about how changing one component requires a change in another
component (dependence)

» The more inter-module dependencies there are, the more expensive it will be to implement a
change in functionality

© Copyright 2022-2025 John G. Artus www.jgartus.net 15

Disadvantages of Tight Coupling \XF/ar1Us

/ Systems Engineering

* Tightly coupled components are difficult to change (impacting extensibility and
scalability)

» The developer needs to understand multiple modules and how they relate to each other
» You need to be careful in making changes to all the modules consistently

» This makes the system more error-prone
» Also, there is a need to build, test, and deploy each changed module, further increasing the development effort

» Tightly coupled modules are also difficult to test
» Testing a single module is difficult since it heavily depends on other modules

* Integration tests are also difficult to set up
» Overall the tests are fragile since a change in any one module could break the tests
» Debugging such modules is also complex because it needs all the dependent modules operating concurrently

» A tightly coupled module is less likely to be reused
» Because of interconnected dependencies, such a module does not perform anything useful on its own
» Hence, it rarely fits the purpose for someone else to reuse
 Also pulling it as a dependency is difficult since it brings in other dependent modules along with it

 Alternatively, under some circumstances, tight coupling has advantages

» In special circumstances involving one-of-a-kind, customized applications

» That may require very close association of multiple, unrelated modules for some special purpose, such as tight
packing of modules in extremely limited physical space

© Copyright 2022-2025 John G. Artus www.jgartus.net 16

How to Achieve Loose Coupling N7z 70s

/ Systems Engineering

» Modules should be as independent as possible

» Modules should communicate only via small, well-defined (“narrow”) interfaces
» The more one module has to “know” about another module, the higher is the coupling between them

* Looking at different kinds of systems and the way they manifest internal coupling, the
variations of this pattern are endless

» It's always the case that if you can reduce the coupling between a system’'s modules, you can reduce the overall
complexity of the system accordingly

« Among Systems Engineering best practices, as stated in many standards, it is key to
minimize the coupling between modules in order to master the product complexity
» Good coupling means that the system organization is clean and the dependencies are easy to understand

» Alternatively, bad coupling means that the system architecture is an entangled mess, and the dependencies are
hard to understand

» To achieve such minimization, a well-known method consists of using Coupling Matrices (also called N2 diagrams)
and then reorganize them to identify architectures with minimal coupling

» The coupling between modules concerns the dependencies between the modules

» These dependencies between the logical modules mainly stem from the functional interfaces

* First start by examining the functional dependencies
» Use them to develop a coupling matrix (N2 diagram)
» Examine the interdependencies of modules within the system organization as revealed by the N2 diagram
» Implement a re-allocation of functions to modules that minimizes coupling

* It is impossible to achieve full decoupling without damaging cohesion

© Copyright 2022-2025 John G. Artus www.jgartus.net 17

Cohesion and Coupling in Architecture Patterns

Architectural Schemes Exemplifying Cohesion and Coupling

The following four figures on this slide and the next show the same elements with the same

dependencies

* In each of the four figures, the system elements are organized differently
» Related domain concepts are represented with the same color

Organization Scheme: Low Cohesion, Tight Coupling

» System elements have no explicit boundaries

* There is no real fore-thought of promoting cohesion of any kind (low cohesion)
» Any occurrence of cohesion is purely coincidental

» Interfaces are established as the need for them is identified
* As aresult, interfaces crisscross throughout the system (tight coupling)

« Such an architecture is also known as a “Big Ball of Mud”

Organization Scheme: High Cohesion, Tight Coupling
» System elements are organized into modules with lots of dependencies between them
» Although the modules are highly cohesive, they are cohesive by the wrong principle
» |n this case, system elements are organized by something other than a domain relationship
» They are NOT with regard to fulfilling any functional goal of the parent subsystem
» Atypical example is an organization in accordance with the principle of separation of
concerns, as shown in a Layered Architecture
» Layered Architecture is a design pattern that that organizes a system into a set of horizontal layers
and thus promotes clean separation of concerns
» In this architecture, each layer has a specific responsibility and communicates only with adjacent
layers

© Copyright 2022-2025 John G. Artus www.jgartus.net 19

Organization Scheme: High Cohesion, Loose Coupling

» This system is organized according to the principle of functionality
« What matters are the functions that a business domain needs to implement in order to
succeed

 The domain defines the functional abstractions with a stable purpose
that drives the cohesion of system elements

« This is the main idea of the Domain-Driven Design
» Domain-Driven Design (DDD) is an approach that emphasizes system designs that reflect
a focus on functionality that addresses the concerns of the business domain

* The focus is on enhancing the cohesion of domain functionality

» An example of this kind of approach is provided in the next few slides
« The domain focus is on providing a multi-layered air defense against threatening aircraft

Organization Scheme: Low Cohesion, Loose Coupling

» Systems with this organization scheme are the result of incorrect
understanding of the domain and applying purely technical approaches to
decouple the modules in an arbitrary way

» In this scheme, interfaces exist everywhere with no abstraction
representing any kind of domain purpose

» Is it even possible to have such an architecture?

« Unfortunately, it is; and it is actually pretty common

© Copyright 2022-2025 John G. Artus

www.jgartus.net

20

Cohesion Versus Coupling

'\/ Systems Engineering

» Cohesion and coupling are related to each other
« Each can affect the level of the other

» Generally, high cohesion correlates with loose coupling

» A module having its elements tightly related to each other and serving a single purpose would rarely interact and
depend on other modules

» Thus, the system will have loose coupling with other modules

« Similarly, tight coupling could be a sign of low cohesion
» Modules could be heavily dependent on each other due to the elements spread across the multiple modules
 Such extensive interdependencies will result in low cohesion

In cohesion, a component focuses on a performing single function| In coupling, components are linked to other components

2 |Cohesion is the degree to which the elements inside a component| Coupling is the degree of interdependence between the
belong together components
Coupling shows the relative independence between the
components
A component with high cohesion contains elements that are tightly| Two components have high coupling (or tight coupling) if they
related to each other and united in their purpose are closely connected and dependent on each other

A component is said to have low cohesion if it contains unrelated | Components with low coupling among them work mostly
elements independently of each other
Highly cohesive components reflect higher quality of design Loose coupling reflects the higher quality of design

Coupling shows the relative independence between the

components
© Copyright 2022-2025 John G. Artus www.jgartus.net 22

Cohesion shows the component’s relative functional strength

7

Cohesion shows the component’s relative functional strength

N 71 G

Summa ry \ // el

/ Systems Engineering

* Cohesion does not depend on the number of connections between
elements, which is what coupling is all about

» Cohesion is more about common functional purpose

» Cohesive modules tend to have a higher degree of coupling within the module, which is expected
and normal

* High cohesion and loose coupling help us reduce accidental complexity and
create modules with well-defined boundaries

* In practice, measures of coupling and cohesion are always interdependent

 As loose coupling is driven by high cohesion, we should strive for high cohesion in the first place
» That is, changing one variable always changes the other; it is impossible to optimize one without
degrading the other
» For example, modifying a system to improve the cohesion of its modules is a good thing to do
» But it generally results in having smaller modules than we had before and therefore more of them
» Adding more modules to a system tends to increase its overall coupling

» Conversely, if we try to improve (reduce) the coupling of a system by merging small modules
together into larger ones
» We would succeed in reducing the number of dependencies between modules

» But, the new modules will necessarily have to have more responsibilities than the previous ones, and thus
poorer cohesion

© Copyright 2022-2025 John G. Artus www.jgartus.net 23

f

Summa I'Y (continued) \ JARTUS

/ Systems Engineering

* Note that it is never possible to actually have perfect decoupling

within a system
» That is only achieved when none of the components interact with each other
» That's not really a system, just an inert collection of components

» Coupling is to a certain extent a good thing and a completely necessary thing, and in fact it's
the thing that enables the functionality of the system

* |t's only when it gets out of hand and begins to hamper productivity that it becomes a problem

*|n the case of cohesion, on the other hand, it is possible to achieve

perfection

» For example, a class that contains just a single method is a perfectly cohesive component of its
system

» However, we're not going to want to take things to that extreme in practice

» Because of the surge in coupling it would incur

» A system made up of a large number of tiny components will tend to manifest a great amount of
coupling among them

*|In a sense, coupling is a manifestation of what a system does, and
cohesion is a manifestation of what the system doesn't do

© Copyright 2022-2025 John G. Artus www.jgartus.net 24

Example: Semi-Autonomous Lawn Mowing System

Ui

O\

/

Systems Engl;wu;lng A

= v / |
Monitor / Navigate Monitor Communicate
Environment g System Health With User

' |

ses Inter-Module Binding (Module-to-Module)
'he functi
/7/7//// each perform functions that have little overlap

T}

e liler 21
//// ' =T nctions display low coupling
erefore, the amount of inter-module interaction (coupling) is reduced

T /;;//// ions are fairly independent of each other

https://www.mdpi.com/2624-7402/1/3/33/htm

G i

Cohesion and Coupling

_/ Systems Engmeenng A

.
Mow Grass Seml-Autonomously

oupling addresses Inter-Module Binding (Module-to-Module)
Control Blade | The Tier 3 functions display low coupling
Rotation » The functions are fairly independent of each other

Speed . . .
T They each perform functions that have little overlap

Evaluate » Cohesion addresses Intra-Module Binding (within the same Module)

7 Cutting / . . . : / :
. Performance Relative to the Tier 2 parent function, the Tier 3 functions display
high cohesion

, il » They all support the parent function
Mower Speed

O Copyright 2022-2025 John G. Artus

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

www.jgartus.net 27

https://www.mdpi.com/2624-7402/1/3/33/htm

D

Poor Cohesion

Tier 1 %//

Print

Tier 2

Receipt

ke
224

)

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

www.jgartus.net 28

https://www.mdpi.com/2624-7402/1/3/33/htm

Ui

Mow Grass Semi-Autonomously
L

. Monitor
Tier 2 Environment

7

% Monitor Obstacle-
Locating Signals

|
Communicate

With User

Monitor
System Health

Navigate 7

Monitor Yard
Boundary

Monitor Status Of i) Process User
Key Components Commands
T :
Contl:ol Blade Monitor “.IOb mm Monitor Lawn Grade mm Monitor Power Level w7 Report System
Rotation Speed . Completion Status
Control Blade
Height
e

mm Monitor Weather = Map Obstacles mmm Monitor Fuel Level

Monitor Vibration
Level

Locate Mower
Position

Control Mower Monitor Grass

// %//{/g/// Density

Coupling is good in this example because the Tier 2 functions Y= p;, mowing Path
are highly independent (their functions do not overlap)

As a result, the communication needed between the Tier 2
functions in minimized

« This leads to fewer interfaces across Tier 2 elements
There is also very little communication needed between the
Tier 3 functions across Tier 2

%@ Copyright 2022-2025 John G. Artus www.jgartus.net 29

Manage Encounter
With Obstacle

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

NS

https://www.mdpi.com/2624-7402/1/3/33/htm

Mow Grass

Evaluate
Cutting
Performance

Monitor Job
Completion

Control Blade
Height

Monitor Grass
Density

Monitor
Environment

Monitor
Obstacle-
Locating Signals

Control Blade
Rotation Speed

Control Mower
Speed

The Tier 3 functions shown here exhibit low cohesion because
they are not all working together to fulfill the goals of their
parent Tier 2 functions

Coupling is poor in this example because some Tier 3 functions
are poorly allocated to Tier 2 parent functions, leading to
* Anincrease in the number of interfaces between these
two Tier 2 functions
« Poor performance due to the increased data traffic across
networks

Tight coupling and the associated interdependence of functions
means that a failure in one dependent function can severely
impact another dependent function

Model adapted from https://www.mdpi.com/2624-7402/1/3/33/htm

www.jgartus.net 30

https://www.mdpi.com/2624-7402/1/3/33/htm

Example: Multi-Layer Air Defense System

zzzzzz
zzzzzzz

a4)
Component elements are Middle Layer

provided in the numbers
required to provide the =
_desired air volume coverage)

Lowest Layer

,,,,,,

Strategic Missile System

/ , (SMS)

This example is presented by describing the system structural components
the fact that the functionality of the system closely resembles the structural identity of its components

www.jgartus.net

[This is done due to

Y

"+ Shown is a completely notional and N Upper Level Weapon Control
fictional air defense configuration — Upper-to-Middle Command Link

« Additional equipment such as radar — Middle Level Weapon Control
sensors not shown to avoid - Middle-to-Lower Command Link

_ overcomplicating the story) Lower Level Weapon Control

Incoming Air Threat

ke
e

N N N \‘

www.jgartus.net 33

Hierarchical Configuration of Three-Layer Structure

R R, Lower La
HIGH COHESION - All Subordinate Units Support ONLY their Parent Unit
LOOSE COUPLING - There are NO cross-organizational communications

In a truly centralized
configuration such as this,
EVERYONE is bound to follow
their Commander’s
instructions

NOONE takes any
independent action

The Commanders direct the
engagement by issuing
commands to subordinates
This is an effective
arrangement until a
commander or a command
link is taken out

At this point, the
disconnected elements are
useless, as they cannot make
decisions on their own

© Copyright 2022-2025 John G. Artus

Middle Layer

For those curious, this is only one simplified view of a complete system
See next slide for a larger perspective

TR

SRR

www.jgartus.net

Ui i

Component elements are
provided in the numbers
required to provide the

desired air volume coverage ; Mo o
.24-‘;”,& R N

< i . o A
WA T

Theater Command Center

Lowest Layer

Medium-Range Radar Long Range Radar
(SAM) (SMS)

www.jgartus.net 35

__
A Complete Air Defense System Would Have Many More Elements

'\/ Systems Engineering o

~ « The Air Defense System example shown is grossly oversimplified to keep the detail under ontrol
/ and the content understandable

» An actual such system would require many, many more elements to provide realistic capability

e This includes:
» The weapon systems already addressed, PLUS ...
Sensor systems needed to detect and track the incoming air threat
Air-based air defense systems (aircraft assigned to attack the incoming air threat)
Electronic Warfare Countermeasures equipment to jam the enemy’s sensors
Electronic Warfare Counter-Countermeasures equipment to jam the enemy’s jamming equipment
Communication units to connect all the components indicated
The number of all these elements discussed needed to provide complete coverage of the defendable area

This never-ending counter-counter-countermeasures cat-and-mouse game has been

ongoing in modern warfare ever since electronics entered the battlefield in WW I

* [n additional, further complications in a real system arise due to
» Many, many different versions of the basic equipment due to improvements made to the systems over time
» Reduced performance levels due to equipment requiring tuning or maintenance

* This all being said to ensure that the student does not get the wrong impression that these kinds of
systems are simple, clean, and fully-functional all the time (they are not)

© Copyright 2022-2025 John G. Artus www.jgartus.net 36

Measuring Cohesion

7

%//The degree of cohesion of a module can be expressed by the following formula:

/

Ny
coh(m, k) =

(') N k -|— (Nm —_ N#”L) The “key” is some aspect of system
functionality which forms the basis for

establishing functional commonality

* where among functional elements

. . . Functional elements of the same “key”
» coh is the measure of cohesion as a function of should ideally form functional modules

* m, the module under investigation

» k, the “key” or functional commonality of interest among the functional elements
« NX is the number of functional elements cohesive by the key within the module
« N¥ is the total number of functional elements in the entire system cohesive by the key
 N,, — N is the number of functional elements not cohesive by the key inside the module

* Obviously, the maximal cohesion of a module is 1
* This is what we strive for

© Copyright 2022-2025 John G. Artus www.jgartus.net 38

Examples of Measuring Cohesion /\ Jartus
Nm
Nk + (Nin — errcz)

coh(m, k) =

» Here are examples of usage of the formula for determining functional cohesion
of a module of interest

» In these examples, the module under consideration is shown by the dashed
circle

* In example A, the cohesion of the module is 1, although it is not recommended
to have functional modules that comprise only a single functional element

» In example B, a functional element of the same key exists outside of the
module of interest, indicating that the module is less than ideally cohesive

* In example C, the condition is worse since a functional element of a foreignh key
exists within the module of interest

, , , . _ 1/(2+1-1)=0.5 1/(1+2-1)=0.5
» In example D, we have achieve a more ideal solution, since all functional

elements of a like key exist within a single module

» In example E, cohesion is again compromised by the existence of a functional
element of a foreign key within the module of interest

* In example F, cohesion is the worst of the examples since not only does a
functional element of a foreign key exist within the module of interest, but __
also, a functional element of the desired key exists outside of the module of i :

© Copyright 2022-2025 John G. Artus www.jgartus.net 39

Measuring Coupling and Instability

Measuring Coupling \Y7.r0s

» Coupling metrics help engineers determine the complexity of their
architecture based on the dependencies between modules

* These metrics reveal how the modules are connected, the strength of their
dependencies and the stability of the overall design

* Tight coupling makes it difficult to alter a single module without causing
direct changes to others

« Updates and tests are all complicated by tight coupling

* A system becomes loosely coupled if individual modules require little or no
knowledge of the surrounding modules to operate

* As such, teams can build systems with modular components by using
functional modules that can act and evolve independently

* This measurement technique is not absolute, but can be used as a tool to
measure the relative degree of coupling between alternative design
approaches

© Copyright 2022-2025 John G. Artus www.jgartus.net 41

The Fenton and Melton Metric A A7 zrus

/ Systems Engineering

*The Fenton and Melton metric is commonly used to measure
the degree of coupling, C, between modules a and b:

*The variable n represents the actual number of direct
interconnections that exist between modules a and b

*The variable i1 indicates the highest level of coupling type that
exists between modules a and b

* Engineers can determine i by examining each of those modules and
identifying the tightest dependency relationship, with 0

representing the lowest level of dependency and 5 representing the
highest (see next slide)

Dependency Scale

Measure of | Coupling
Coupling (i) Type

Meaning for Software

Meaning for Systems

5 Content
Coupling

Module X refers to the inside of Module Y
It branches into, changes data, or alters a statement in Module Y

Module X affects the functional behavior of Module Y

Common
Coupling

Modules X and Y refer to the same global data
This type of coupling is undesirable because if the format of the
global data needs to be changed then all common coupled
modules must also be changed

Modules X and Y refer to the same global data

Control
Coupling

Module X passes a parameter to Module Y with the intention of
controlling its behavior

Module X passes a parameter to Module Y with the
intention of controlling its behavior

Stamp
Coupling

Modules X and Y accept the same record type as a parameter
This type of coupling may manufacture an interdependency
between otherwise unrelated modules

Modules X and Y accept the same record type as a
parameter
This type of coupling does not constitute a strong
interdependency

Data
Coupling

Modules X and Y communicate by parameters,
each one being either a single data element or a homogeneous
set of data items that do not incorporate any control element
This type of coupling is necessary for any communication
between modules

Modules X and Y communicate by parameters
This type of coupling is necessary for any
communication between modules

No
Coupling

© Copyright 2022-2025 John G. Artus

Modules X and Y have no communication whatsoever
They are totally independent

Modules X and Y have no communication whatsoever
They are totally independent

www.jgartus.net

Measuring Instability

/ Systems Engineering

* [nstability is a metric used to measure the relative susceptibility of a
component to breaking changes. Instability indicates that a software
class, package, subsystem or other given module will be significantly
impacted by changes elsewhere

* Instability is calculated according to the following formula, where |
represents instability:
| =Ce / (Ce + Ca)
 To accurately calculate instability, engineers must also delineate
the nature of a module’s dependency relationships by measuring
two major types of coupling

« Efferent Coupling
» Afferent Coupling

© Copyright 2022-2025 John G. Artus www.jgartus.net

Ui

Efferent Coupling and Afferent Coupling

erent Coupling

» Efferent coupling is a measure of the number of other modules that a given
module (Module Y in the example) depends on to operate

» Asizable level of efferent coupling indicates that a module may be difficult to

observe, reuse, test, and maintain

« For instance, it's unlikely that engineers will be able to update a module with a

great deal of efferent coupling without also updating each module it depends on

» In most cases, engineers will want to decompose these dependencies, which will
help instill the single functional responsibility principle needed to loosen coupling Arrows indicate a dependency

.

Module at tail end of arrow(s)
depends on module(s) at head end

 Afferent Coupling

» Afferent coupling measures the number of other modules that are dependent on a

given module (Module Y in the example)

» While it still may make a module difficult to change, high afferent coupling is not
necessarily a bad thing, as it can invariably occur in certain areas of a system

» However, it is a poor architecture practice to maintain extensive afferent coupling
across a large number of system functions

» Ideally, a module with bundles of afferent coupling should remain small and take
on as few functional responsibilities (requirements) as possible

© Copyright 2022-2025 John G. Artus www.jgartus.net 45

Ui

Efferent and Afferent Coupling Example

Here, the efferent coupling (Ce)

.

and the affe(ent coupling (Ca) of Module A
ule A, is illustrated
the diagram shows, Module Y is

/ dependent on four other modules:

X, Z,B,and C
* Meanwhile, there is a single

module - Module A - that depends

on MOdUle Y Module Y is dependent on four other
° 1 1 components: X, Z, B, and C
In th]S Case, the efferent COUpl'ln.g The Efferent Coupling of Module Y is 4
of Module Y has a value of 4, while
: - Module A is dependent on Module Y
the Value Of]tS afferent COUpl]ng The Afferent Coupling of Module Y is 1

1S 1

© Copyright 2022-2025 John G. Artus www.jgartus.net

46

’/ R~

\ . A

Instability Example

/ Systems Engineering

 The instability formula will produce a value for | that ranges from 0 to 1

* Modules are considered to be generally stable when this calculation places
the value of | closer to 0

* Modules with tighter coupling will usually produce a value closer to 1,
which indicates that it is highly susceptible to changes that cause the
module to fail

 Using the example class from earlier, we can calculate the instability of
Module A by:

c1=4/(4+1)

* Hence, the instability of Module A is 0.8, indicating that it is particularly

susceptible to changes that could cause the module to fail

* While the module is not completely incapable of independent changes, it
still maintains enough dependencies to prohibit modularity

© Copyright 2022-2025 John G. Artus www.jgartus.net

%// agade, G (2021). Difference Between Cohesion and Coupling. Retrieved from
- https://www.baeldung.com/cs/cohesion-vs-coupling

% Nelson, J (2014). Coupling And Cohesion: Overview. Retrieved from

2

3.

4.

G
References

https://github.com/jn123456789/coupling and cohesion

Java T Point (2022). Coupling and Cohesion. Retrieved from
https://www.javatpoint.com/software-engineering-coupling-and-cohesion

Samares Engineering (2020). Coupling optimization of logical architecture using
genetic algorithm. Retrieved from https://www.samares-
engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-

architecture-using-genetic-algorithm/

. Sandoval, K (2020). The Difference Between Tight Coupling and Loose Coupling.

Re(tjrieved from https://nordicapis.com/the-difference-between-tight-coupling-
and-loose-

coupling/#: ~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%200r%20a

%20specifickh20frontend. &text=In%20a%20loosely%20coupled%20system,are%20d

etached%20from%20each%20other

© Copyright 2022-2025 John G. Artus www.jgartus.net 48

https://www.baeldung.com/cs/cohesion-vs-coupling
https://github.com/jn123456789/coupling_and_cohesion
https://www.javatpoint.com/software-engineering-coupling-and-cohesion
https://www.samares-engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-architecture-using-genetic-algorithm/
https://www.samares-engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-architecture-using-genetic-algorithm/
https://www.samares-engineering.com/en/2020/07/31/part-5-coupling-optimization-of-logical-architecture-using-genetic-algorithm/
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other
https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/#:~:text=Tight%20Coupling%20is%20the%20idea,interface%2C%20or%20a%20specific%20frontend.&text=In%20a%20loosely%20coupled%20system,are%20detached%20from%20each%20other

_

References (continued)

A\ /] G
'ARPTIIC
Fa AR A 0

L/ Systems Engineering [A

6. Tulka, T (2020). How Cohesion and Coupling Correlate. Retrieved from
https://blog.ttulka.com/how-cohesion-and-coupling-correlate/

/. Patterson, A., Yang, Y., Norris, W. (2019). Development of User-Integrated Semi-
Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and

Proposed Architecture. Retrieved from https://www.mdpi.com/2624-
7402/1/3/33

8. Kanjilal, J. (2020) The Basics of Software Coupling Metrics and Concepts.
Retrieved from: https://www.techtarget.com/searchapparchitecture/tip/The-
basics-of-software-coupling-metrics-and-concept

9. Fenton, N., and Melton, A. (1990) Deriving Structurally Based Software
Measures. Retrieved from: https://sci-hub.st/10.1016/0164-1212(90)90038-n

© Copyright 2022-2025 John G. Artus www.jgartus.net 49

https://blog.ttulka.com/how-cohesion-and-coupling-correlate/
https://www.mdpi.com/2624-7402/1/3/33
https://www.mdpi.com/2624-7402/1/3/33
https://www.techtarget.com/searchapparchitecture/tip/The-basics-of-software-coupling-metrics-and-concept
https://www.techtarget.com/searchapparchitecture/tip/The-basics-of-software-coupling-metrics-and-concept
https://sci-hub.st/10.1016/0164-1212(90)90038-n

Ui
Image Sources

zzzzz

es-air-operations

(Y16 -

/.: ation/

4 ,j/

ntials/threats-guide/surface-to-air-missile-sa-3/

/// 255037/

93

www.jgartus.net 50

http://www.armaco.bg/userfiles/images/ARMAAGZU23-n.png
https://www.ausairpower.net/PVO-S/5P73-Launcher-Deployed-MiroslavGyurosi-1S.jpg
https://en.euractiv.eu/wp-content/uploads/sites/2/2022/12/ree.jpg
https://api.army.mil/e2/c/images/2018/07/26/525190/original.jpg
https://api.army.mil/e2/c/images/2015/09/11/408981/original.jpg
https://www.afcea.org/signal-media/crown-jewel-program-modernizes-air-operations
https://www.aiviagroup.com/mapping-steep-terrain-and-dense-vegetation/
https://www.popsci.com/wp-content/uploads/2021/04/21/6557886.jpeg
https://mavink.com/explore/1S12-Long-Track
https://www.falcon-lounge.com/falcon-bms-essentials/threats-guide/surface-to-air-missile-sa-3/
https://www.pinterest.com/pin/159314905555255037/

	Slide 1: Cohesion And Coupling
	Slide 2: Overview of Cohesion and Coupling
	Slide 3: Index
	Slide 4: Cohesion
	Slide 5: Overview of Cohesion
	Slide 6: Benefits of High Cohesion
	Slide 7: Functional Analysis Versus Functional Synthesis
	Slide 8: Functional Analysis and Synthesis within the Sys Arch Def’n Process
	Slide 9: The Result of Functional Decomposition During Functional Analysis
	Slide 10: Functional Synthesis Results in the System Functional Hierarchy
	Slide 11: How to Achieve High Cohesion
	Slide 12: Taking Modularization Too Far
	Slide 13: Coupling
	Slide 14: Overview of Coupling
	Slide 15: Advantages of Loose Coupling
	Slide 16: Disadvantages of Tight Coupling
	Slide 17: How to Achieve Loose Coupling
	Slide 18: Cohesion and Coupling in Architecture Patterns
	Slide 19: Architectural Schemes Exemplifying Cohesion and Coupling
	Slide 20: Architectural Schemes Exemplifying Cohesion and Coupling
	Slide 21: Cohesion Versus Coupling
	Slide 22: Cohesion Versus Coupling
	Slide 23: Summary
	Slide 24: Summary (continued)
	Slide 25: Example: Semi-Autonomous Lawn Mowing System
	Slide 26: Cohesion and Coupling
	Slide 27: Cohesion and Coupling
	Slide 28: Poor Cohesion
	Slide 29: Good (Loose) Coupling
	Slide 30: Low Cohesion, Poor (Tight) Coupling
	Slide 31: Example: Multi-Layer Air Defense System
	Slide 32: Components of the Layered Air Defense Architecture
	Slide 33: Battlefield Layout of Defense Equipment Configuration
	Slide 34: Hierarchical Configuration of Three-Layer Structure
	Slide 35: Additional Components of the Layered Air Defense Architecture
	Slide 36: A Complete Air Defense System Would Have Many More Elements
	Slide 37: Measuring Cohesion
	Slide 38: Measuring Cohesion
	Slide 39: Examples of Measuring Cohesion
	Slide 40: Measuring Coupling and Instability
	Slide 41: Measuring Coupling
	Slide 42: The Fenton and Melton Metric
	Slide 43: Dependency Scale
	Slide 44: Measuring Instability
	Slide 45: Efferent Coupling and Afferent Coupling
	Slide 46: Efferent and Afferent Coupling Example
	Slide 47: Instability Example
	Slide 48: References
	Slide 49: References (continued)
	Slide 50: Image Sources

