

Security Model Description

Lecture 63, v02

A description of an example model developed by MathWorks and modified for use in an educational setting

Purpose

- This lecture describes a set of Simulink/Stateflow models that describe:
 - A simplified (modified) version of a Home Security System (HSS) model originally developed by the MathWorks
 - This model is hereforth called the As-Is HSS Model
- The description of this model is conducted in two sections
 - A description of the As-Is HSS Simulink (environment) model (Section 1)
 - A description of the As-Is HSS Stateflow (system) model (Section 2)
- Some of the material contained herein to describe the MathWorks model is sourced from various pages on www.mathworks.com
- The copyright applied to this document refers to the arrangement of material both from MathWorks and originally generated by J.G. Artus into a format that is appropriate to covering the subject in a 1- to 2-week educational module

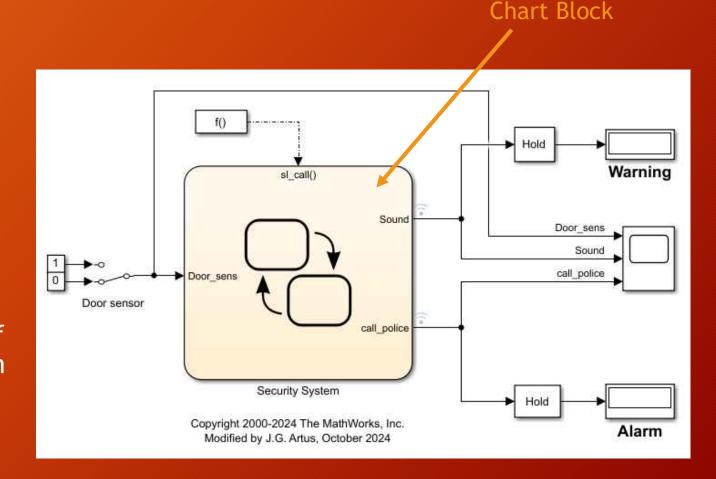
Section 1

A description of the Simulink portion of the Simplified Home Security System (HSS) Model

To learn about the original MathWorks model of the Home Security System (HSS), see https://www.mathworks.com/help/stateflow/gs/events.html

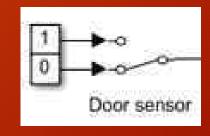
The executable model can be obtained within MATLAB by typing the following into the command prompt: openExample('sf_security')

As-Is Home Security System Model Overview

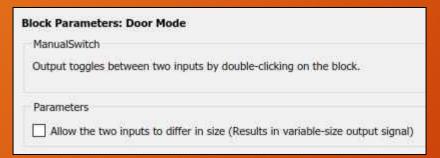

- This model represents a home alarm system that has a single intrusion-detection sensor
 - When the system detects an intrusion, it sounds an audible "Sound"
 - After a period of 60 seconds, a "call_police" signal is issued
- This model shows how to
 - Send Simulink (environment) input events to Stateflow (system) to simulate triggering of a system alarm sensor
 - Broadcast local events within Stateflow to coordinate between parallel states
 - Output Stateflow (system) events to drive external blocks in Simulink (environment)
- The Simulink model represents the environment within which the security system is operationg
 - It consists of one anti-intrusion sensor attached to a door of the premises
 - The simulation operator has control over the door sensor to simulate tripping of the sensor by an intruder
- The Stateflow model represents the logic of the security system
 - It consists of two parallel states: one the door anti-intrusion sensor and one that controls sounding the audio alert and issuing
 a call to the police
 - In each time step, the parallel states are evaluated in sequence as indicated by the numbers in the top right corners of the states
- Simulink inputs sent to the Stateflow model include
 - · For the door sensor, an intrusion detection signal
- Outputs from the Stateflow model include
 - · A signal to sound an audible intrusion warning
 - A signal to call the police

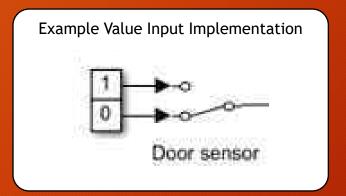
As-Is and To-Be are descriptors commonly used in Systems Engineering to represent the original system configuration (As-Is) as it stands today, and the configuration of the system that is anticipated to exist (To-Be) after the planned modifications to the As-Is configuration are completed

Original HSS Environmental Model (sf_security.slx)

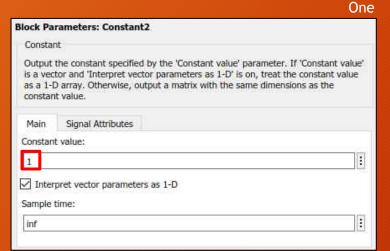

- This model represents a simple Home Security System (HSS)
- Shown here is the Simulink portion of the model that represents the environmental simulation within which the Stateflow system model operates
- The Simulink model includes a "Chart Block" that represents the Stateflow model which is considered to be the model of the "System of Interest"
- The Stateflow model contains the statebased logic that controls the transitions of states within the modeled Security System control unit, based on the Simulink environmental model inputs - it describes the behavioral logic of the system that is the subject of study (the System of Interest or SoI)

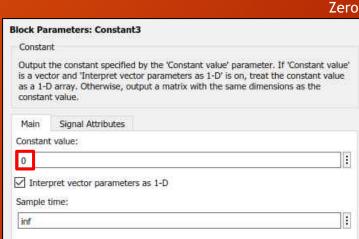
Switch Inputs


- One manual switch is provided in the Simulink model
- This switch represent the current sense of the Door sensor
 - When the switch is set to 0, this indicates that the door sensor has not been tripped (no intrusion is detected)
 - When the switch is set to 1, this indicates that the door sensor has been tripped (intrusion has been detected)
- This switch can be changed by the simulation operator during running of the simulation



Switch Arrangement


- Switches are simple Simulink Manual Switches that flip between Boolean constants 0 and 1
 - Example Manual Switch for Door Mode



Two Simulink
Constant Blocks
are used to feed
the switch inputs

Boolean constants

Both Are Boolean

Constant

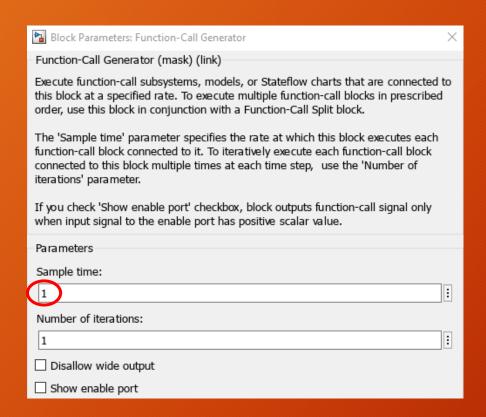
Output the constant specified by the 'Constant value' parameter. If 'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on, treat the constant value as a 1-D array. Otherwise, output a matrix with the same dimensions as the constant value.

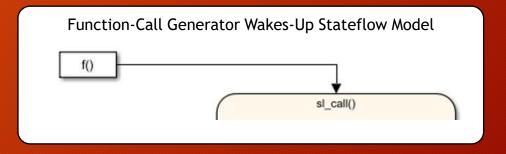
Main Signal Attributes

Output minimum:

Output maximum:

Output data type:

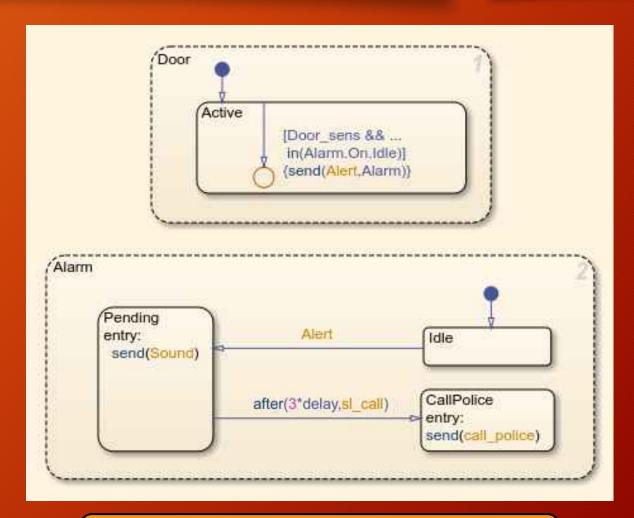

boolean


Lock output data type setting against changes by the fixed-point tools

Function-Call Generator

- The Function-Call generator is used to wake up the Stateflow Chart at a selected rate
- The generator for this model operates at a 1 second rate

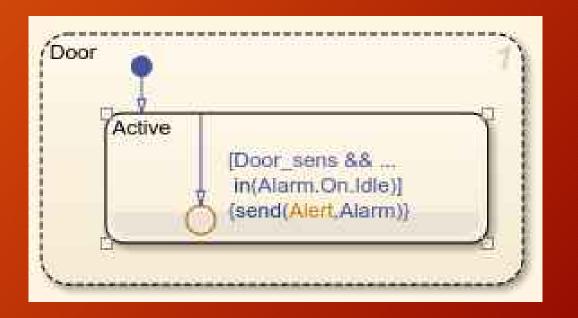
Section 2


9

A description of the Stateflow portion of the As-Is Home Security System (HSS) Model

Stateflow Model of Security System State Behavior

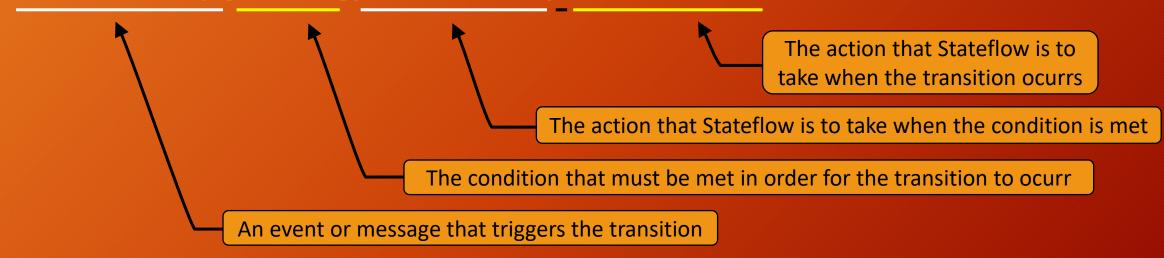
- This model controls the behavior of the system based on the switch setting inputs provided by the Simulink (environment) portion of the model
- The Stateflow model controls how the system reacts to the tripping of the the door sensor
- It also controls the sounding of the audible warning and calling of the police, based on operator responses following tripping of the door sensor


Stateflow simulates state-based behavior, showing how the system transitions from one state to another based on events occurring in and around the system

Door Behavior

11

- Door has one substate: Active
- The event "Door_sens" (=1 input from Simulink) simulates the door senor being tripped (by an open door)
- This event is triggered via the manual switch "Door sensor" in Simulink
- When the event "Door_sens" occurs, it sends an "Alert" signal to the Alarm state (see slide for Alarm state)
 - The door sensor interprets a single positive trigger signal as an intrusion and issues an immediate alert



Interpreting the Transition Label

12

- Transitions in Stateflow use a particular format, and understanding that format and using it correctly is critical to getting a Stateflow model to execute correctly
- The Transition Label in Stateflow is broken into parts using the following format
 - event_or_message[condition]{condition_action}/transition_action

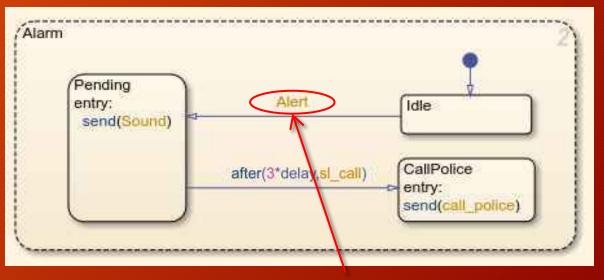
- Specifying an event or message is optional
- The ? character is the default transition label
- You can specify multiple events using the OR logical operator (|)
- The absence of an event or message indicates that the transition takes place immediately on the occurrence of any event

What are Events?

13

- An event is a Stateflow object that can trigger actions in a Stateflow or Simulink model
- Explicit events (defined by user) can have one of these types:
 - <u>Input Event</u> Event that is broadcast to a Stateflow chart from outside the chart
 - Local Event Event that can occur anywhere in a Stateflow chart but is visible only from within the parent object and its descendants
 - Local events are supported only in Stateflow charts in Simulink models
 - Output Event Event that occurs in a Stateflow chart but is broadcast to a Simulink block
 - Output events are supported only in Stateflow charts in Simulink models
- Events do not have values like variables do sending and receiving an event simply means something has happened in the scenario (that can trigger something else to happen)

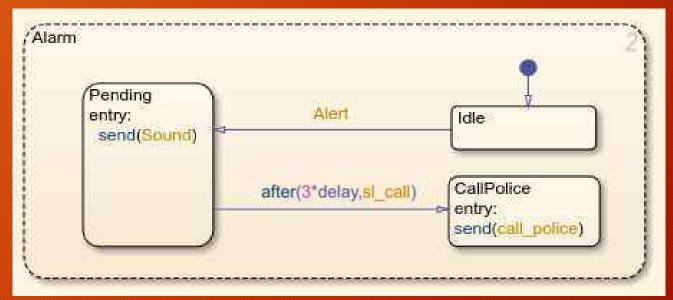
Use of Events in the Original HSS Model


In state Door. Active, the transition

[Door_sens && in(Alarm.On.Idle)] {send(Alert,Alarm);}

- uses the "send" function to transmit the event Alert to state Alarm
- This only happens IF the system is currently in the state Alarm. Idle where the Alert event has meaning
- Inside state Alarm, the transition from substate Idle to substate Pending is triggered on reception of the Alert event

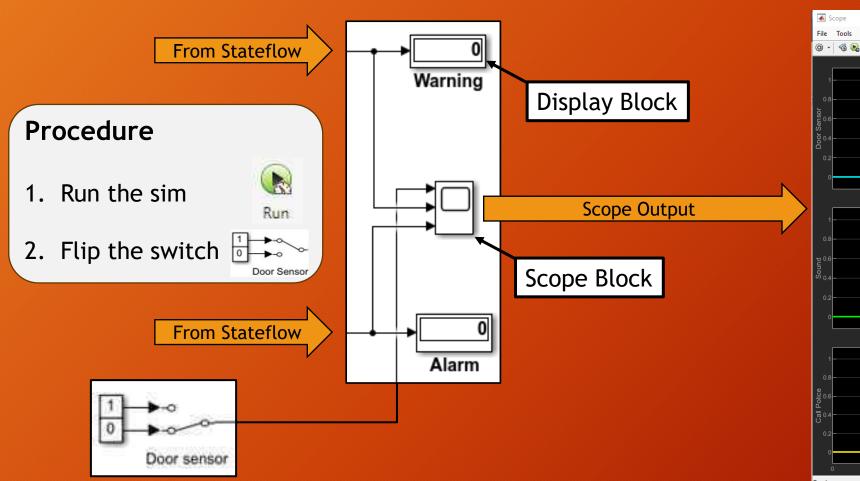
Transmit "Alert"

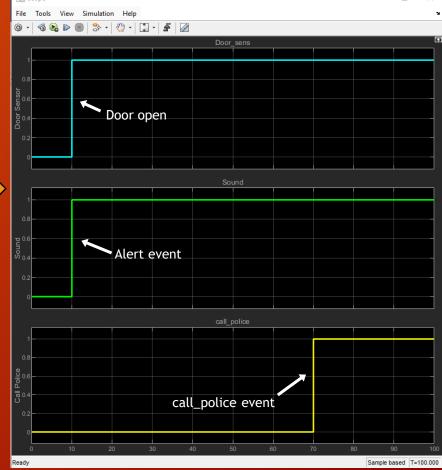

Respond to "Alert"

Alarm Behavior

15

- The Alarm state has three substates: Idle, Pending, and CallPolice
- The system will transition from Idle to the Pending state when an Alert event occurs
 - The Alert event is sent (using "send(Alert,Alarm)") to the Idle substate of the Alarm parent state (using "in(Alarm.On.Idle)") by state Door
- After 4 seconds in the Pending state, the system transitions to the CallPolice state in which the event "call_police" is broadcast




Monitoring System Behavior Using the Scope Block in Simulink

16

- The Scope Block is used to display signals over time
- The Display Block simply displays the current value that exists on a signal channel

Section 3

References

References

- The MathWorks. (2022), Synchronize Parallel States by Broadcasting Events
 - https://www.mathworks.com/help/stateflow/gs/events.html