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About This Courseware

• The majority of the material presented in this course is sourced from the 
textbook “System Architecture” by Edward Crawley, Bruce Cameron, and Daniel 
Selva

• I, John Artus, make no claim of ownership of the material sourced from this 
textbook

• I, John Artus, am using the material sourced from this textbook, and other 
indicated sources, as content for this courseware for educational purposes only

• This courseware lecture material has been sourced, interpreted, assembled, 
formatted, and copyrighted by John G. Artus for use in this educational context

• Anyone may freely access, and reuse this material in an educational context 
provided the copyright owner, John G. Artus, is recognized as the interpreter, 
assembler, and formatter of the source material used in the generation of this 
courseware, and provided that Edward Crawley, Bruce Cameron, and Daniel Selva 
are recognized as authors of the textbook “System Architecture” from which the 
majority of the content of this courseware has been sourced
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Preface

• This course is about Systems Architecture

• There are many kinds of systems
• Natural

• Social

• Mechanical

• Electrical

• While the course textbook “Systems Architecture” by Crawley, Cameron, and 
Selva includes discussions of various types of systems, the focus in this course will 
be on Complex Engineered Systems

• Simple system examples will be used to explore the processes and practices used to analyze, 
design, and develop more complex systems

• Engineered Systems are ethical socio-technical systems with a recognized SE life 
cycle

• They are engineered by humans, utilizing technology developed by humans, to provide a 
socially-beneficial service to humans

• Natural and social systems are considered only as far as their relevant and important 
environmental considerations pertain to the engineered System of Interest (SoI)
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• Biological

• Informational

• Software

• etc



What is a “System”

• ISO/IEC/IEEE 15288 – Systems Engineering Processes
• Systems are man-made, created and utilized to provide products and services in defined 

environments for the benefit of users and other stakeholders
• A system is an arrangement of parts or elements that together exhibit behavior or meaning that the 

individual constituents do not
• SEBoK – SE Body of Knowledge

• A system is any set of related parts for which there is sufficient coherence between the parts to make 
viewing them as a whole useful

• Main points
• A system is made up of entities that interact or are interrelated
• Relationships among entities can be

• Static – as with a connection
• Dynamic – as with an exchange of items

• Information
• Material
• People
• Energy
• Data

• Key takeaway:
• A system is a set of entities and their relationships, whose functionality is greater than that of the sum of the 

individual entities
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It is VERY difficult to summarize all there 

is to say about a System in one statement

(no matter how carefully crafted it is)

Entities are the parts, modules, routines, 

assemblies, etc, that make up the whole

In this course we are primarily interested 

in engineered systems – those conceived 

of and developed by human beings



A Note About Software Systems

• Software Systems are systems in which the vast majority of the system elements 
are software components

• Software is a recognized element type of complex engineered systems

• Complex engineered systems can involve a large number of software components

• Software Engineering is a specialized domain of Systems Engineering
• The processes and procedures are specialized forms of the general Systems Engineering 

processes and procedures

• Specifically designed to deal with the design, development, and integration of software 
components

• While all of the lessons in this course apply equally to software components, the 
focus of the lecture material will be on traditional components that may or may 
not include software components

• The detailed processes and procedures for dealing specifically with software 
components is left to a be covered in a course on Software Engineering
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What is “Systems Engineering”
• INCOSE

• Systems Engineering is a transdisciplinary and integrative approach to enable the successful 
realization, use, and retirement of engineered systems, using systems principles and concepts, and 
scientific, technological, and management methods.

• ISO/IEC/IEEE 15288 and NASA Systems Engineering Handbook
• Interdisciplinary approach governing the total technical and managerial effort required to transform a 

set of customer needs, expectations, and constraints into a solution and to support that solution 
throughout its life.

• Good Systems Engineering work results in a system that displays these characteristics:
• The system is easily identifiable, including its boundary, its form, and its function

• The entities that make up the system are easily identified, including their boundary, their form, and 
their function

• The relationships among the entities that make up the system are easily identified, including their 
boundary, their form, and their function; this includes the relationships that cross the system 
boundary (to other external systems)

• The emergent properties of the system are identified based on the function of the entities, and their 
functional interactions
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It is VERY difficult to summarize all there is to 

say about Systems Engineering in one statement

(no matter how carefully crafted it is)



What is a “System Architecture”

• ISO/IEC/IEEE 15288 – System Life Cycle Processes
• A system architecture represents the fundamental concepts or properties related to a system in its 

environment embodied in its elements, relationships, and in the principles of its design and evolution

• SEBoK – SE Body of Knowledge
• The solution architecture has features, properties, and characteristics which satisfy, as far as possible, the 

problem or opportunity expressed by a set of system requirements (traceable to mission/business and 
stakeholder requirements) and life cycle concepts (e.g., operational, support) and which are implementable 
through technologies (e.g., mechanics, electronics, hydraulics, software, services, procedures, human 
activity).

• ISO/IEC/IEEE 42010 – Architecture Description
• A system architecture establishes the fundamental concepts or properties of a system in its environment 

embodied in its elements, relationships, and in the principles of its design and evolution

• In summary
• A System Architecture is an abstract description of the entities of a system and the relationships between 

those entities
• A good System Architecture displays the following characteristics

• Meets stakeholders’ needs and delivers value

• Integrates easily with other entities (other systems)

• Evolves flexibly to meet changing requirements over time

• Operates simply and reliably
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It is VERY difficult to summarize all there is to say 

about a System Architecture in one statement

(no matter how carefully crafted it is)



What is “System Architecting”?
• ISO/IEC/IEEE 15288 – System Life Cycle Processes

• The purpose of the Architecture Definition process is to generate system architecture alternatives
• To select one or more alternative(s) that frame stakeholder concerns and meets system 

requirements
• To express the Architectural Description in a set of consistent views

• SEBoK – SE Body of Knowledge
• The purpose of system architecture activities is to define a comprehensive solution based on 

principles, concepts, and properties logically related to and consistent with each other
• ISO/IEC/IEEE 42010 – Architecture Description

• The process of architecting is that of conceiving, defining, expressing, documenting, communicating, 
certifying proper implementation of, maintaining, and improving an architecture throughout a 
system’s life cycle.

• The key purposes of performing the System Architecting process:
• Ensure that the solution, as described in the architecture

• Achieves the required performance and resource levels (a set of defined targets and constraints)
• Is distributed to and available to the entire development team

• Provide the architectural detail needed by the design process engineers to continue the system 
development
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It is VERY difficult to summarize all there is to 

say about System Architecting in one statement

(no matter how carefully crafted it is)



What is a “System Architectural Description”?
• ISO/IEC/IEEE 42010 – Architecture Description

• The Architectural Description is a work product used to express an architecture
• It includes one or more architecture views
• An architecture view addresses one or more of the concerns held by the system’s stakeholders
• An architecture view expresses the architecture of the system-of-interest in accordance with an architecture 

viewpoint
• There are two aspects to a viewpoint: the concerns it frames for stakeholders and the conventions it 

establishes on views

• From the following documents, an short, but adequate definition of an Architectural 
Description can be assembled

• ISO/IEC/IEEE 15288 – System Life Cycle Processes
• ISO/IEC/IEEE 42010 – Architecture Description
• SEBoK – SE Body of Knowledge
• INCOSE Handbook v4

• An Architectural Description is the expression of an architecture in the form of Architectural 
Views which address the concerns held by the system’s stakeholders

• Architectural Viewpoints establish the conventions by which Architectural Views are 
presented in an Architectural Description
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There is no single statement from accepted standard 

documentation that concisely and adequately 

defines what is an Architectural Description



Examples of Stakeholder Concerns

• Affordability

• Agility

• Alignment With 
Business Goals & 
Strategies

• Assurance

• Autonomy

• Availability

• Behavior

• Business Impact

• Capability

• Complexity

• Compliance To 
Regulation

• Concurrency

• Control

• Cost

• Customer 
Experience

• Data Accessibility

• Deadlock

• Disposability

• Environmental 
Impact

• Feasibility

• Flexibility

• Functionality

• Information 
Assurance

• Interoperability

• Inter-process 
Communication

• Known Limitations

• Maintainability

• Misuse

• Modifiability

• Modularity

• Openness

• Performance

• Privacy

• Quality Of Service

• Reliability

• Resilience

• Resource Utilization

• Schedule

• Security

• Shortcomings

• State Change

• Structure

• Subsystem 
Integration

• System Features

• System Properties

• System Purposes

• Usability

• Usage

• Viability
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Source: Overview of an Emerging Standard on Architecture Evaluation – ISO/IEC 42030; James Martin; 2017; INCOSE



Rumsfeld’s “Known Unknowns” (etc) *

• One goal of System Architecture 
work is to identify those areas 
lacking either understanding or 
awareness

• Especially those having a major 
impact on stakeholder value

• Need to resolve them (as able) 
to become Known Knowns

• This occurs as the architecture is 
further developed at lower levels 
of detail

• Unknown Unknowns are 
particularly dangerous

• Discovering too many of these may 
mean you are in the wrong business
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* Donald Rumsfeld (February 12, 2002). United States Department of Defense

While these concepts were new and interesting to the public in 

2002, Rumsfeld did not “discover” them. These concepts were well 

known to and understood by Systems Engineers for decades prior.

Ahn Dang, 2019

Systems Engineers translate “Lack of Awareness 

and Understanding” into “Risk” and “Uncertainty”



Emergence

• Emergence refers to what appears, materializes, or surfaces when a system operates

• Understanding emergence is a goal of system thinking

• Function is what a system does: its actions, outcomes, or outputs

• Function emerges when a system components are integrated together

• Humans design systems so that the anticipated desirable primary function may emerge

• This primary function is often linked to the benefit produced by the system

• Often, other than the primary desirable function can emerge from a system

• Emergent function can be anticipated or unanticipated, and it can be desirable or 
undesirable

• Sometimes, as a system comes together, unanticipated function emerges

• This can either be desirable unanticipated outcome or undesirable unanticipated outcome 

• Anticipated but undesirable outcomes may also emerge

• Architects work to reduce the possibility of emergence of anticipated but undesirable outcomes

• An excessive amount of “unknowns” in a system architecture increases the risk of anticipated but 
undesirable outcomes emerging
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Forward Engineering versus Reverse Engineering

• In Forward Engineering, conceptualize and specify a problem 
needing a solution in the form of requirements, that are then 
developed as behaviors that the system must perform though the 
implementation of structure or form

• The Forward Engineering process is summarized as:
• Use the System Requirements to design and build the system
• Design the Behavior that satisfies the System Requirements
• Design the Form that instruments the needed Behavior

• In Reverse Engineering, employ deductive reasoning in order to 
understand 1) what a system does, 2) how the system accomplishes 
what it does, 3) what was the original system specification

• The Reverse Engineering process is summarized as:
• Examine the Form of the system, in order to
• Deduce the Behavior of the system, so as to then
• Deduce the System Requirements that were originally established to design and build 

the system

www.jgartus.net© Copyright 2022 John G. Artus 13

https://www.nasa.gov/centers/johnson/engineering/human_space_v

ehicle_systems/energy_systems_test_area/pyrotechnics/index.html

https://www.istockphoto.com/photo/engineer-overseeing-

automated-production-process-in-a-factory-gm1152220713-312526676

System 

Requirements

Behavior 

(Functionality)

Form (Instrument 

of Behavior)
Product

System 

Requirements

Behavior 

(Functionality)

Form (Instrument 

of Behavior)
Product



Use of System Analysis in Architecture Work

• Types of system analysis
• Top-Down

• Start with a system boundary and an overall description of system functions

• Through the repeated application of element identification, division, grouping, and allocation of 
functions, a complete description of the elements needed for the SoI can be defined

• The choice of system elements and allocation of functions may be guided by
• Pre-defined ways of solving a given problem

• Or by identified system patterns

• Both can support as well as insert bias into the synthesis

• Bottom-Up
• Start with major elements and interactions

• Use division, grouping, and identification to construct a full system description
• Capable of providing all the necessary functions

• At which point the final SoI boundary can be set

• The choice of system elements and groupings will be driven by the goal of ensuring that the major 
system elements can be formed together into a viable system whole

• In-Out
• A combination of the two above which starts with the “knowns”

• Expand from the knowns to discover and develop the “unknowns”
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Forward Engineering often relies 

heavily on Top-Down analysis

Reverse Engineering often relies 

heavily on Bottom-Up analysis



Use of Analysis Types in Practical Work

• Different jobs call for different applications of analysis types, often based on 
experience

• Experts in the Field

• Companies with established product lines draw on a significant bank of experience and sets of 
existing designs to determine the viability of and configuration of future products

• In situations like this, engineers rely on

• Bottom-Up analysis to use existing designs to satisfy new requirements

• Top-Down analysis, where needed to explore new requirements not faced before

• Second-Class Competitor

• Companies with less-established product lines must lean more heavily on Top-Down analysis to deal 
with a significant number of “unknowns”

• New Entrant into Industry

• May have to perform a significant amount of Reverse Engineering, employing Bottom-Up analysis of 
competitor products to gain enough knowledge to become competitive

• Once sufficient knowledge has been gained, Top-Down analysis of customer requirements will be 
needed to help get the company on level playing field with the competition
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System Hierarchy

• Simplified Automobile 
Example

• Car is broken down into its 
major subsystems

• Each of the major 
subsystems is in turn 
(recursively) broken down 
into it’s major components

• The process continues 
recursively until we’ve 
either

• Reached elements which 
can no further be 
decomposed, or

• Have achieved the 
objective of the 
decomposition and no 
further decomposition is 
needed
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Forward and reverse engineering are not strictly performed in these directions

There is a bidirectional nature to both

But basically, the majority of the work is in the directions indicated

https://whatsoftwarecando.org/en/juggling-trees-layout-hierarchical-information-compactly/

When discussing Systems Engineering proceses, the context is Forward Engineering



ISO 15288 Systems Engineering “VEE” Model

• The Systems Engineering Lifecycle 
Processes defined in ISO/IEC/IEEE 
15288 can be laid out in a “VEE” 
format

• This format emphasizes the 
decomposition and development of 
the system element details on the 
left side

• Along with the product integration 
and delivery details on the right 
side

• The model is in the shape of a 
“VEE” to emphasize the parallel 
relationship between the left side 
(decomposition and development) 
with the right side (integration and 
delivery)

• Verification and Validation planning 
are done on the left

• Verification and Validation 
implementation are done on the 
right
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Where Does System Architecting Fit?

• … in the System Life 
Cycle Process Model VEE?

• System Requirements are 
input to the System 
Architecture Definition 
Process

• The Architecture 
Description is output to 
the Design Definition 
Process
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Where Do Requirements End and Architecture Begin?

• The Systems Engineering Life Cycle Processes are 
iterative and recursive

• Therefore they occur repeatedly, until a review or 
other program-level decision is made to terminate a 
process

• During an iteration, however, the System 
Requirements Definition Process ends when:

• A preplanned stopping point is reached
• Due to budget, schedule, or other constraint or milestone

• Sufficient risk and/or uncertainty has been resolved
• Architecturally-relevant requirements can no longer be 

discovered
• Other program-level decision terminates the process

• However, the complete set of artifacts needed by 
the Architecture Definition team must be made 
available prior to termination of the System 
Requirements Definition Process

• STOP developing requirements when sufficient 
system specification is provided to the System 
Architecture Definition Process
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• Specification of System Requirements does not occur 

in one fell swoop

• Requirements can be fed to the Architecture Design 

process in stages (by levels)

• Process iteration allows feedback between 

Architecture and Requirements to further refine the 

requirements

• However, the Architecture Development process is not 

complete until all requirements have been considered



System Decomposition Terminology

• There are many different interpretations of the terminology to be 
used to describe the items which result from a system decomposition

• NASA
• Element of a system – any item resulting from the system decomposition 

process
• Can include hardware, software, people, facilities, policies, documents, databases, etc

• Any “thing” that is relevant to the system design and operation

• System - an integrated set of elements that accomplish a defined objective
• Subsystem- a system in its own right, except it normally will not provide a 

useful function on its own, it must be integrated with other subsystems (or 
systems) to make up a system

• Component - the elements that make up a subsystem or system
• Part – the elements on the lowest level of the hierarchy
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Different organizations use their own set of terms to describe items in a system decomposition

There is no standard utilization of terms across industry at this time
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Decomposing the Space Transportation System

Space Transportation 

System

External 

Tank
Orbiter

Solid Rocket 

Booster

Level 0

Level 1

The “System”

Major Subsystems

Orbiter

External 

Tank

Solid 

Rocket 

Booster

https://thumbs.dreamstime.com/z/space-shuttle-illustration-d-rendered-object-isolated-white-background-no-shadows-70154189.jpg

It is easier to identify element boundaries when the elements 

have a clear separation of physical form as in this example

In more difficult cases of decomposition, logical features, 

such as functionality, may dictate where element boundaries 

are drawn
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Decomposing the STS Orbiter

Space Transportation 

System

External 

Tank

Solid Rocket 

Booster

External 
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Thermal 

Protection 

System

Avionics 

System

Environmental 

Control 

System

etc...

Level 0

Level 1

Level 2

The “System”

Major Subsystems

Major Assemblies

Orbiter

http://www.markfranklinarts.co.uk/space-shuttle/
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Decomposing the STS Orbiter Avionics System

Space Transportation 

System

External 

Tank
Orbiter

Solid Rocket 

Booster

External 

Structure

Thermal 

Protection 

System

Avionics 

System
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Control 

System
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Communication 

System

Instrumentation 

System

Command & Data 

Handling System

Displays & 

Controls
etc...

Level 0

Level 1

Level 2

Level 3

The “System”

Major Subsystems

Major Assemblies

Components

http://www.aerospaceweb.org/question/conspiracy/q0258.shtml
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Decomposition of STS to Level 3 (incomplete)

Space Transportation 
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System Architecture Decomposition “VEE” Model

• Similar to how the Systems 
Engineering Lifecycle 
Processes can be laid out in a 
“VEE” format, so can the 
System Architecture 
Decomposition levels

• This format emphasizes the 
actual level of decomposition 
at which development work is 
being performed

• Instead of defining processes 
that are performed, the VEE 
emphasizes the decomposition 
from the System down to the 
Component level
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Dual “VEE” Model (System Level)

• Here, the Systems Engineering 
Lifecycle Processes VEE (blue) is 
superimposed on top of the 
System Architecture 
Decomposition VEE (red) at the 
System level (Level 0)

• Lifecycle processes appropriate 
for Level 0 (Business or Mission 
Analysis, etc) are indicated

• This implies that while engineers 
are operating at the System Level 
(Level 0) the SE Lifecycle 
processes are applied at that level
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Dual “VEE” Model

• Here, the Systems Engineering Lifecycle 
Processes VEE (blue) is superimposed on 
top of the System Architecture 
Decomposition VEE (red) at the 
Subsystem level (Level 1)

• Lifecycle processes appropriate for Level 
0 (Business or Mission Analysis, etc) are 
not included below Level 0

• This implies that while engineers are 
operating at the Subsystem Level (Level 
1) the SE Lifecycle processes are applied 
at that level

• Similarly, the Systems Engineering 
Lifecycle Processes VEE (blue) is 
superimposed on top of the System 
Architecture Decomposition VEE (red) at 
all remaining lower levels of the system 
hierarchy
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Where Does Architecting End and Design Begin?

• The Systems Engineering Life Cycle Processes are 
iterative and recursive

• Therefore they occur repeatedly, until a review or 
other program-level decision is made to terminate a 
process

• During an iteration, however, the System 
Architecture Definition Process ends when:

• A preplanned stopping point is reached
• Due to budget, schedule, or other constraint or milestone

• Sufficient risk and/or uncertainty has been resolved
• Architecturally-relevant system elements can be 

decomposed no further
• Other program-level decision terminates the process

• However, the complete set of artifacts needed by 
the Design Definition team must be made available 
prior to termination of the System Architecture 
Definition Process

• STOP architecting when the goals of the 
Architectural Description have been met
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• An Architectural Description can be implemented in 

more than one way

• A detailed design can only be implemented as 

specified

• A design that complies with the Architectural 

Description is ready to proceed to implementation

• Implementation cannot begin on the basis of the 

Architectural Description alone



Requirements as Input Specifications to Architecture

• In the Problem Definition 
Area

• Concepts are developed

• Needs are assessed

• Expectations are voiced

• Stakeholder Requirements 
are defined

• In the Solution Definition 
Area

• System Requirements are 
defined

• System Architecture 
Definition Process is 
implemented

• Subsystem Requirements 
are defined

• The Solution Area Definition 
process is repeated 
recursively throughout the 
defined system structure
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Solution 

Definition 

Area

Level 0System Requirements

Definition Process

Component “W” 

Requirements

Component “X” 

Requirements

Component “Y” 

Requirements

Component “Z” 

Requirements

Level 1 Level 1

Concepts, Needs, 

Expectations

System

Requirements

System Architecture Definition Process

Subsystem “A” Architecture 

Definition Process

Subsystem “B” Architecture 

Definition Process

Subsystem “B” 

Requirements

External Context

Subsystem “A” Requirements Definition Process Subsystem “B” Requirements Definition Process

Problem

Definition

Area
Stakeholder

Requirements

Subsystem “A” 

Requirements

Adapted from Faisandier, Alan (2012)



Relation of Requirements and Architecture Processes

• Stakeholder Requirements are translated into System 
Requirements

• System Requirements are satisfied by the Logical and 
Physical Architectures

• The Logical Architecture (behavior) is performed by 
the Physical Architecture (the instrument of 
behavior)

• The Logical and Physical Architectures help define 
the requirements for the System’s Subsystems (at the 
next lower level)

• The System Requirements are dispatched into the 
Subsystem Requirements

• Read that as: the Subsystem Requirements are derived 
from the System Requirements

• This process is iterative in that it is performed 
repeatedly iteratively at the same level to refine the 
Logical and Physical Architectures and to refine the 
Subsystem Requirements

• This process is recursive in that it is performed 
recursively at lower levels until the architectural 
design objectives have been met
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This is a simplified view of a rather complex 

systems engineering management process

Logical

Architecture

(behavior)
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Architecture
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Requirements
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Subsystem “B” 
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Level “N”

Stakeholder

Requirements

translated into

satisfied by satisfied by

performed by

dispatched into

definedefine

System Architecture

Definition Process

System Requirements Definition Process
Adapted from Faisandier, Alan (2012)



Architecture Process over Multiple Levels

• The System’s Subsystem B Requirements become 
the System Requirements for Subsystem B

• Stakeholder Requirements relative specifically to 
Subsystem B (if any) are input to develop the 
Subsystem B Requirements

• This process repeats recursively throughout the 
system structure
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Requirements as Input Specifications to Architecture

Adapted from Faisandier, Alan (2012)

The complete set of 

Architecture 

Descriptions from all 

levels constitute the 

Total System 

Architecture 

Description

This is the principal 

output of the System 

Architecture Definition 

Process

And also serves as the 

specification (input) for 

the Design Definition 

Process

Level 0System Requirements

Definition Process

Component “W” 

Requirements

Component “X” 

Requirements

Component “Y” 

Requirements

Component “Z” 

Requirements

Level 1 Level 1

Concepts, Needs, 

Expectations

System

Requirements

Subsystem “B” 

Requirements

External Context

Subsystem “A” Requirements Definition Process Subsystem “B” Requirements Definition Process

Stakeholder

Requirements

Subsystem “A” 

Requirements

System Architecture Definition Process

Subsystem “A” Architecture 

Definition Process

Subsystem “B” Architecture 

Definition Process

etc...



Dual-VEE

• Combines
• Systems Engineering 

Lifecycle Processes 
VEE (blue)

• System Architecture 
Decomposition VEE 
(red)
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Adapted from Forsberg, Mooz, and Cotterman (2005)

• Notes
• Business or Mission Analysis normally 

conducted only at System Level

• Operation, Maintenance, Disposal 
normally conducted only at System Level

• The involvement of the stakeholder at 
lower levels of decomposition depends 
on the product, but normally decreases 
at lower levels of the system hierarchy

• 2022



Duel-VEE Interactions
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1

1. System Requirements 
are fed to the System 
Architecture Definition 
process at the System 
Level

2

3

4

5

2. System Requirements are 
decomposed into derived 
requirements that apply at 
the Subsystem Level

3. The Subsystem Level Requirements 
are fed to the System Architecture 
Definition process at the Subsystem 
Level

4. The System Architecture Definition process 
is performed at the System Level to 
produce the Subsystem Architecture 
Description that serves as the architectural 
specifications at the Subsystem level

5. The Subsystem Level Requirements are reconciled 
against the Subsystem Level Architecture

i. Any discrepancies are negotiated for corrections at 
the System Level

Space 

Transportation 

System

External 

Tank

Level 0

Level 1

Orbiter

Solid 

Rocket 

Booster



Application of Standard Processes in Industry

• Just because standard processes have been defined and have been broadly 
accepted across industry

• Does not guarantee that product development will succeed

• Some companies do not formally follow standard processes, yet survive

• Other companies apply standard processes excessively or incorrectly and experience failures

• The best performing companies employ and manage formal processes and do so to the correct 
degree appropriate to the work being performed

• Too much or too little process is not good

• As typical in engineering, use of processes “depends” on many factors

• Successful companies have spent decades discovering the right balance of application of process to 
the development jobs they perform

• At a minimum, engineering management and engineering staff must be familiar 
with standard SE processes

• Project team management should decide the right balance of process to employ 
on the project

• The project should publish a Systems Engineering Management Plan (SEMP) to 
define exactly which processes are being applied to what degree
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Architecture: Art and Science

• Every human-built system has an architectural description
• On paper
• In a model, or a repository
• In someone’s head
• Lost to history
• Possibly recoverable by performing reverse engineering of the system

• The process of establishing the architecture of a system is both 
an art and a science

• The artistic aspect is addressed by employing proven heuristics (rules of 
thumb)

• The scientific aspect is addressed by following documented principles, 
procedures, processes, methods, using the correct tools, etc
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Principles, Methods, Tools

• Principles are the underlying and long-enduring fundamentals
• Nearly always valid

• Includes a prescriptive part

• Includes a descriptive part

• Methods are the ways of organizing approaches and tasks to achieve a 
concrete end

• Should be solidly grounded on principles

• Are usually applicable to the task being performed

• Tools are the contemporary ways to facilitate process
• They enable the employment of methods and the compliance with principles

• They can also sometimes constrain the methods used and the principles that 
can be followed
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Architecture Definition Processes

• ISO/IEC/IEEE 42020 Software, systems and enterprise — Architecture processes
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Architecture 

Management

Architecture 

Governance

Architecture 

Elaboration

Architecture 

Conceptualiziation

Architecture 

Evalution

• Defines the internationally 
accepted processes to be 
employed when performing 
Architecture Definition

Architecture 

Enablement

Management

Plans & Status
Governance

Directive & Guidance

Execution

Plans & Status
Management

Instructions & Guidance

Architecture

Process Enablers
Enablement

Requests & Feedback



Architecture Governance Subprocess

1. Prepare for and plan the architecture governance effort

2. Monitor, assess, and control the architecture governance 
activities

3. Establish architecture collection objectives

4.Make architecture governance decisions

5.Monitor and assess compliance with governance 
directives and guidance

6.Review implementation of governance directives and 
guidance
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Architecture Management Subprocess

1. Prepare for and plan the architecture management effort

2. Monitor, assess and control the architecture management 
activities

3. Develop architecture management approach

4. Perform management of the architecture collection

5. Monitor architecting effectiveness

6. Prepare for completion of the architecture 
management plan
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Architecture Conceptualization Subprocess

1. Prepare for and plan the architecture conceptualization effort

2. Monitor, assess and control the architecture conceptualization activities

3. Characterize problem space

4. Establish architecture objectives and critical success criteria

5. Synthesize potential solution(s) in the solution space

6. Characterize solutions and the tradespace

7. Formulate candidate architecture(s)

8. Capture architecture concepts and properties

9. Relate the architecture to other architectures and to relevant affected 
entities

10. Coordinate use of conceptualized architecture by intended users

www.jgartus.net© Copyright 2022 John G. Artus 41

Architecture 

Conceptualization



Architecture Evaluation Subprocess

1. Prepare for and plan the architecture evaluation effort

2. Monitor, assess and control the architecture evaluation activities

3. Determine evaluation objectives and criteria

4. Determine evaluation methods and integrate with evaluation 
objectives and criteria

5. Establish measurement techniques, methods and tools

6. Collect and review evaluation-related information

7. Analyze architecture concepts and properties and assess 
stakeholder value

8. Characterize architecture(s) based on assessment results

9. Formulate findings and recommendations

10.Capture and communicate evaluation results
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Architecture Elaboration Subprocess

1. Prepare for and plan the architecture elaboration effort
2. Monitor. assess and control the architecture elaboration 

activities
3. Identify or develop architecture viewpoints
4. Develop models and views of the architecture(s)
5. Relate the architecture to other architectures and to 

relevant affected entities
6. Assess the architecture elaboration
7. Coordinate use of elaborated architecture by intended 

users
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Architecture Enablement Subprocess

1. Prepare for and plan the architecture enablement effort

2. Monitor, assess, and control the architecture enablement 
activities

3. Manage the architecture process enablers

4. Acquire, develop and establish enabling capabilities, 
services and resources

5. Deploy enabling capabilities, services and resources

6. Improve architecture enablement capabilities, services 
and resources
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Lessons Learned

• Over time, we have learned
• Bad architectural decisions can kill a large project from the outset
• Systems embodying the mistakes of the past do not survive
• Those that embody sound architectures generally do survive — and even 

prosper
• However, there is no guarantee

• Often, getting the architecture “right” merely creates a platform on which the execution 
of the product can then either flourish or flounder

• A good system architecting process allows us to
• Look downstream and identify which constraints and opportunities will be 

central to delivering value to the stakeholder
• Perform trades among several architectural concepts early while the cost of 

doing so is low
• Focus on “emergence” where entity functionality comes together to produce 

new emergent functionality where it did not exist before
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Early Decision Making

• It is important to make key decisions early on in the architectural process 
• Unfortunately, many of these early architectural decisions must be made without full 

knowledge of the system’s eventual scope
• Some of these may be the infamous “known unknowns”

• Yet, such decisions need to be made in order for other design work to proceed

• These early decisions will have enormous impact on the eventual design

• The good news is that these early decisions can be analyzed and treated
• The architecture of the system merits careful analysis and scrutiny

• Despite uncertainty around scope

• And even without knowing the detailed design of components

• Focus on decision making
• System architectures are rarely chosen in one fell swoop

• They are iteratively defined by a series of choices

• A formal decision-making process enables system architects to directly trade the choices 
for each decision, rather than the underlying designs they represent

• This encourages broader concept evaluation

• And to enables system architects to order decisions according to their leverage on the 
system performance
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Skills Required of a Good System Architect

• Use systems thinking in both a product context and a system context

• Analyze and critique the architecture of existing systems

• Identify architectural decisions, and differentiate between architectural 
and non-architectural decisions

• Create the architecture of new or improved systems, and produce the 
deliverables of the architecture

• Place the architecture in the context of value and competitive 
advantage for the product and the firm

• Drive out the ambiguity inherent in the upstream process by
• Defining the context and boundaries of the system

• Interpreting needs

• Setting goals

• Defining the externally delivered functions
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Skills Required of a Good System Architect

• Create the concept for the system, consisting of internal function 
and form, while thinking holistically and out of the box when 
necessary

• Manage the evolution of system complexity and provide for future 
uncertainty so that goals are met and functions are delivered

• Ensure the system remains comprehensible to all during its design, 
implementation, operation, and evolution

• Challenge and critically evaluate current modes of architecting

• Identify the value of architecting, analyze the existing product 
development process of a firm, and locate the role of architecting 
in the product development process

• Develop the guiding principles for successful architecting
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