
SE Life Cycle Models

John G. Artus
BSEE

MSSE

INCOSE ESEP

© Copyright 2023-2024 John G. Artus 1www.jgartus.net

Lecture 45, v03

About This Courseware

• The majority of the material presented in this course is sourced from the
textbook “Visualizing Project Management” by Kevin Forsberg, Hal Mooz, and
Howard Cotterman

• I, John Artus, make no claim of ownership of the material sourced from this
textbook

• I, John Artus, am using the material sourced from this textbook, and other
indicated sources, as content for this courseware for educational purposes only

• This courseware lecture material has been sourced, interpreted, assembled,
formatted, and copyrighted by John G. Artus for use in this educational context

• Anyone may freely access, and reuse this material in an educational context
provided the copyright owner, John G. Artus, is recognized as the interpreter,
assembler, and formatter of the source material used in the generation of this
courseware, and provided that Kevin Forsberg, Hal Mooz, and Howard Cotterman
are recognized as authors of the textbook “Visualizing Project Management” from
which the majority of the content of this courseware has been sourced

www.jgartus.net© Copyright 2023-2024 John G. Artus 2

What is a Life Cycle Model?

• A life cycle model is used in engineering to describe the complete life of an
instance of a System-of-Interest (SoI)
• It consists of a set of phases, stages, and processes that the SoI goes through, from its

inception to its retirement and disposal

• The stages are terminated by decision gates, where the key stakeholders decide whether to
• Proceed to the next stage

• Proceed, but address open actions from the previous stage while in the new stage

• Remain in the current stage until ready to proceed

• Terminate the project or re-scope the project

www.jgartus.net© Copyright 2023-2024 John G. Artus 3

Processes

Stage Stage Stage StageStage

Phase Phase

A B C D

Decision Gates

Life Cycle Model Terminology

•Different organizations use different terms

•But in general, life cycle model terms are:

• Phases – Represents major periods of performance on a program

• Stages – Minor periods of performance within a program phase

• Processes - A series of technical processes performed within stages, during
which technical and management activities are performed

• The organization must establish the work that is to be performed during each
process

• The organization must establish which artifacts are required to do the work in
each phase and which artifacts will be produced as deliverables

www.jgartus.net© Copyright 2023-2024 John G. Artus 4

Examples of Specific Life Cycle Models

• US Department of Defense (DoD)

• US National Aeronautics and Space Administration (NASA)

• US Department of Energy (DOE)

www.jgartus.net© Copyright 2023-2024 John G. Artus 5

https://www.nasa.gov/seh/3-project-life-cycle

CD-0 CD-1 CD-2 CD-3 CD-4

https://www.directives.doe.gov/directives-documents/400-series/0415.1-EGuide-1/@@images/file

https://aaf.dau.edu/aaf/mca/tech-reviews/

It can be seen here that

different organizations

employ somewhat different

life cycle models

But in the final analysis,

they all accomplish similar

objectives

The models are different to

accommodate the specific

types of projects worked

and the interests of specific

stakeholders

https://www.nasa.gov/seh/3-project-life-cycle
https://www.directives.doe.gov/directives-documents/400-series/0415.1-EGuide-1/@@images/file
https://aaf.dau.edu/aaf/mca/tech-reviews/

Typical Phases of the SE Life Cycle

•Feasibility or Study Phase
• Stakeholder requirements and system requirements are identified, viable solutions are

identified and studied, and virtual prototypes can be implemented

• The feasibility of alternative concepts reaching a second decision gate before initiating the
execution stage is studied

•Execution Phase
• The execution phase includes activities related to four stages of the system life cycle:

development, production, utilization, and support

• Typically, there are two decision gates and two milestones associated with execution activities

• The first milestone provides the opportunity for management to review the plans for execution
before giving the go-ahead

• The second milestone provides the opportunity to review progress before the decision is made to
initiate production

• The decision gates during execution can be used to determine whether to produce the
developed SoI and whether to improve it or retire it

www.jgartus.net© Copyright 2023-2024 John G. Artus 6

Typical Stages of the SE Life Cycle (continued)

•Concept Stage
• Define the user (and stakeholder) requirements and constraints
• Establish the feasibility of meeting the user requirements, including technology readiness

assessment
• Stakeholder needs and requirements are revisited as new information becomes available

•Development Stage
• The selected concept(s) identified in the concept stage are elaborated in detail down to the

lowest level to produce the solution that meets the stakeholder requirements
• Continue with user involvement through in-process validation (the right-side upward arrow on

the Vee model)

•Production Stage
• The SoI is built or manufactured
• Product modifications may be required to resolve production problems, to reduce production

costs, or to enhance product or SoI capabilities
• Any of these modifications may influence system requirements and may require system re-

qualification, re-verification, or re-validation
• All such changes require SE assessment before changes are approved

www.jgartus.net© Copyright 2023-2024 John G. Artus 7

Typical Stages of the SE Life Cycle (continued)

•Utilization Stage
• Provide supporting systems which help sustain operation of the product

• These supporting systems should be seen as system assets that, when needed, are activated in
response to a situation that has emerged in respect to the operation of the SoI

• The collective name for the set of supporting systems is the Integrated Logistics Support (ILS)
system

•Support Stage
• The SoI is provided services that enable continued operation

• Modifications may be proposed to resolve supportability problems, to reduce operational costs,
or to extend the life of a system

• These changes require SE assessment to avoid loss of system capabilities while under operation

•Retirement Stage
• The SoI and its related services are removed from operation

• Planning for disposal is part of the system definition during the concept stage

• SE focus is on ensuring that disposal requirements are satisfied

www.jgartus.net© Copyright 2023-2024 John G. Artus 8

Systems Engineering Technical Processes

• The INCOSE Handbook Identifies the Following 14 SE Technical Processes
• Business or Mission Analysis Process

• Define the business or mission problem or opportunity, characterize the solution space, and determine
potential solution class(es) that could address a problem or take advantage of an opportunity

• Stakeholder Needs and Requirements Process
• Define the stakeholder requirements for a system that can provide the capabilities needed by users and

other stakeholders in a defined environment

• System Requirements Definition Process
• Transform the stakeholder, user-oriented view of desired capabilities into a technical view of a solution that

meets the operational needs of the user

• Architecture Definition Process
• Generate system architecture alternatives, to select one or more alternative(s) that frame stakeholder

concerns and meet system requirements, and to express this in a set of consistent views

• Design Definition Process
• Provide sufficient detailed data and information about the system and its elements to enable the

implementation consistent with architectural entities as defined in models and views of the system
architecture

• System Analysis Process
• Provide a rigorous basis of data and information for technical understanding to aid decision-making across

the life cycle

• Implementation Process
• Realize a specified system element

www.jgartus.net© Copyright 2023-2024 John G. Artus 9

See Section 2.3.5 of the INCOSE Handbook v5 for

further details of each of these technical processes

Systems Engineering Technical Processes (continued)

• Integration Process

• Synthesize a set of system elements into a realized system (product or service) that satisfies system
requirements, architecture, and design

• Verification Process

• Provide objective evidence that a system or system element fulfils its specified requirements and
characteristics

• Transition Process

• Establish a capability for a system to provide services specified by stakeholder requirements in the
operational environment

• Validation Process

• Provide objective evidence that the system, when in use, fulfills its business or mission objectives and
stakeholder requirements, achieving its intended use in its intended operational environment

• Operation Process

• Use the system to deliver its services

• Maintenance Process

• Sustain the capability of the system to provide a service

• Disposal Process

• End the existence of a system element or system for a specified intended use, appropriately handle
replaced or retired elements, and properly attend to identified critical disposal needs

www.jgartus.net© Copyright 2023-2024 John G. Artus 10

www.jgartus.net© Copyright 2023-2024 John G. Artus 11

Mapping the 14 SE Technical Processes to a Generic Life Cycle Model

Concept

Stage

Development

Stage

Utilization

Stage

Support

Stage

Production

Stage

Retirement

Stage

Business or Mission Analysis Process
Stakeholder Needs and Requirements Process

Design Definition Process

Integration Process
Implementation Process

System Analysis Process

Verification Process

Disposal

Process

Operation Process
Validation Process

Transition Process

Maintenance Process

Architecture Definition Process

This graphic illustrates in which stage the

activities associated with technical processes

are more highly concentrated

It is important to observe that the execution of

process activities is not compartmentalized to

any particular life cycle stages (as shown here)

Instead, these activities are often implemented

over the entire life cycle

System Requirements Definition Process

www.jgartus.net© Copyright 2023-2024 John G. Artus 12

More Realistic Representation of Technical Process Activities

As shown, these activities may

have peaks of effort at certain

times, but are often

implemented over the entire

life cycle of the SoI

SEBok v2.8, page 285

Major Types of Life Cycle Models

www.jgartus.net© Copyright 2023-2024 John G. Artus 13

Waterfall Model

www.jgartus.net© Copyright 2023-2024 John G. Artus 14

• The Waterfall Model depicts development activities as a series of steps
progressing diagonally from upper left to lower right in discrete, sequential,
linear phases

• It requires that work downstream should not begin until up-stream
uncertainties are resolved and major reviews (decision gates) have been
satisfied

• Issues with the waterfall model
• Risk-averse

• Encourages unrealistic cost and schedule estimates

• Gives the appearance of problem-free development

• Drives a need to initiate system design earlier in the

development cycle than appropriate to ensure that

the requirements are properly understood and to

prove technical feasibility

Spiral Model

www.jgartus.net© Copyright 2023-2024 John G. Artus 15

• An excellent risk-driven model that attempts to address the shortcomings of
the Waterfall Model

• Addresses the need for early requirements understanding and feasibility
modeling including operational scenario modeling

• The Spiral is another view of the technical aspect of the project cycle that
emphasizes early risk analysis and system prototyping

• Issues with the spiral model
• The circular time representation is inconsistent with

traditional left-to-right time representations

• Risk management is portrayed as a sequence of serial

analyses preceding and delaying low-risk product

development rather than offering the option of

performing risk management as an ongoing, parallel

part of the development process

• All risk management is shown to cease once the

concept represented by the operational prototype is

available, giving the impression that the following

detail design and build-up will be risk free

The SE Vee Life Cycle Models

www.jgartus.net© Copyright 2023-2024 John G. Artus 16

• There exist many different interpretations of the SE Vee Model
• Three main interpretations that are addressed in this lecture are those based on

• The expanding development and verification of product baselines
• The sequential flow of SE Technical Processes that result in the development and verification

of product baselines
• A “Dual-Vee” that incorporates the features of the two above interpretations

“Architecture Vee”

Based on Expanding Baselines

“Entity Vee”

Based on Sequential Flow

of SE Technical Processes

“Dual Vee”

Incorporates the features of

Architecture Vee and Entity Vee

The Architecture Vee Model

www.jgartus.net© Copyright 2023-2024 John G. Artus 17

Architecture Vee is Based on Expanding Baselines

• The Architecture Vee model is
based on expanding development
and verification of product
baselines

• This is a primary example of a
model based on pre-specified and
sequential processes

• Its core involves a sequential
progression of plans,
specifications, and products that
are baselined and put under
configuration management

www.jgartus.net© Copyright 2023-2024 John G. Artus 18

A baseline is a fixed reference in the

development cycle or an agreed-

upon specification of a product at a

specific milestone in the project

Called the

“Architecture Vee”

In Systems Engineering, a component is given

the technical term “configuration item” or CI

Baselining of a Product Configuration

• A Configuration Baseline is a fixed reference in the development cycle or an agreed-upon
specification of a product at a specific time which can only be changed through a change control
process

• It aims to identify major changes and non-compliance to the performance of a configuration item
throughout system development so that the Program Manager / Engineers can take appropriate
action

• It consists of the performance documentation and standards that comprise a product at a certain
moment during its development
• When a certain program milestones is met, the product configuration at that point in time is preserved - this is called a

Baseline

• The milestone chosen could be any one of

• Time (Schedule)

• Maturity (Progress)

• Budget (Termination of an activity based on expenditures)

• Any combination or some other criteria

• The Baseline is formally examined and agreed upon at a given time and can only be amended via
change control procedures

• Throughout the development lifecycle, the baseline is employed to measure, monitor, and manage
changes

www.jgartus.net© Copyright 2023-2024 John G. Artus 19

Types of Configuration Baselines
• Functional Baseline

• Describes the functional and interface characteristics of the system in a detailed functional performance specification

• Describes the verification procedures to be performed to demonstrate the achievement of the specified functional
characteristics

• The functional baseline is normally established and put under configuration control at the System Functional Review (SFR)

• Usually verified during a System Verification Review (SVR) and/or a Functional Configuration Audit (FCA)

• Allocated Baseline
• Describes the configuration items (CIs) that make up a system

• Describes how system function, performance, and interface requirements are allocated across lower-level CIs

• Describes the verification procedures required to demonstrate the traceability and achievement of the allocated requirements

• Usually established at each configuration item’s Preliminary Design Review (PDR), culminating in a system-allocated baseline
established at the system-level PDR

• Product Baseline
• Describes the functional and physical characteristics of a configuration item

• Describes the selected functional and physical characteristics designated for production acceptance testing

• Describes the tests necessary for deployment/installation, operation, support, training, and disposal of the configuration item

• The initial product baseline includes “build-to” specifications for hardware and software

• Usually established at each configuration item’s Critical Design Review (CDR), culminating in an initial system product baseline
established at the system-level CDR

www.jgartus.net© Copyright 2023-2024 John G. Artus 20

“Configuration Item” is a formal term for system

elements under configuration management and can

include hardware items as well as software items

“Allocation” refers to the assignment of responsibility

to some configuration item for implementing a

function or performance requirement

A “Build-To Spec” includes all the instructions needed

to fabricate a part

Technical Baselines

• Technical baselines describe product functions, performance, and interfaces
• Technical baselines are formally controlled definitions of the characteristics of a system
• Includes user requirements, program and product information, and related documentation for all configuration items

• The technical baselines consists of the Functional, Allocated, and Product Baselines
• As development proceeds, the program establishes its functional baseline, allocated baseline, and product baseline

• Each of the technical baselines is placed under configuration management when they are established
• Once a baseline is established, change becomes a formalized process which provides stability during design
• Technical baselines enable the underlying design to progress using a common reference

• Management of technical baselines is typically part of the configuration management process

www.jgartus.net© Copyright 2023-2024 John G. Artus 21

Major Documents in the Technical Baseline Functional Baseline Allocated Baseline Product Baseline

System Performance Specifications X

Item Performance Specifications X

Item Details Specifications X

External Interfaces Specifications / Interface Control Documents X

Internal Interfaces Specifications / Interface Control Documents X

Functional Architecture X

Physical Architecture X X

Technical Architecture X

Progress of Configuration Baselining

• As the system design progresses from conceptual to developmental to product, the system description is
typically formalized through a series of increasingly detailed baselines

• Baselines are often established when the structural and functional decomposition of a system at a given tier
level is complete

• Baselining continues as successive verification proceeds as the system components are integrated towards
delivery of the final product

www.jgartus.net© Copyright 2023-2024 John G. Artus 22

System

Element A

Subsystem
A1

Assembly
A1a

Component
A1a1

Part
A1a1.1

Part
A1a1.2

Component
A1a2

Assembly
A1b

Subsystem
A2

Assembly
A2a

Subsystem
A3

Element B

Subsystem
B1

Subsystem
B2

Element C

Tier 0

Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

Example System Component Decomposition Architecture Vee

Note: Different organizations

use different terminology for

the components at a given level

of the decomposition hierarchy

Features of the Architecture Vee

• The left side of this Vee represents the

decomposition of the system at multiple

levels, ending at the final level which

represents the “Lowest Configuration

Items” (LCIs)

• The Vee widens going from top to bottom

to indicate the increasing number of

defined components

• The right side of the Vee represents the

integration (assembly) of components into

larger assemblies until the final product is

assembled at the top of the Vee

• The graphic is in the form of a “V” since

the left side processes perform planning

for the integration and verification

activities that are performed by the right

side processes

www.jgartus.net© Copyright 2023-2024 John G. Artus 23

Architecture Vee showing Baseline Development

• This view of the Architecture Vee
shows the ongoing development of
product baselines

• In the figure, as you go down the left
side of the vee, decomposition of the
system proceeds, and developmental
baselines are produced

• As you go up the right side of the vee,
integration of the components
proceeds, and verification baselines
are produced

• At each vertical level of the vee,
developmental baselines established
on the left side of the vee eventually
define and support verification
activities on the right side of the vee

• When verification activities at a given
vertical level of the vee on the right
side are concluded, a verification
baseline is established

www.jgartus.net© Copyright 2023-2024 John G. Artus 24

Architecture Vee
with Baselines shown

Architecture Vee Core Activities and Baseline Maturation

• As time progresses in the project,
new baselines are approved and
placed under configuration control

• In the figure, the vertical line
represents the current state of the
project in time

• At the time shown, decomposition of
the system is continuing,
representing the ongoing
development of the current baseline

• Activities on the right side of the
vee culminate with integration
milestones that produce baselines as
well

• Decomposition and Integration
activities that produce baselines are
considered to be “core” activities of
the vee

www.jgartus.net© Copyright 2023-2024 John G. Artus 25

“CORE” of

the Vee

Approved baselines cannot be revisited (you cannot go back in time)

without major program schedule adjustments

Architecture Vee Off-Core Activities

• In addition to the core activities
performed during decomposition
and integration, off-core
activities can be conducted
vertically at any time during
baseline maturation

• Systems engineers traverse down
the hierarchy to resolve
unknowns by examining lower
level details

• They can also traverse up the
hierarchy to obtain user approals
as necessary

• This enables projects to perform
concurrent opportunity and risk
analyses, as well as continuous
in-process validation

www.jgartus.net© Copyright 2023-2024 John G. Artus 26

Jack

Jill

Jeff

Jack
Owns: System

Customer: Boss or Stakeholder

Manages: Subsystems A and B

 Development

Jill
Owns: Subsystem B

Customer: Jack

Manages: CIs B1, B2,

 and B3

Jeff
Owns: CI B3

Customer: Jill

Manages: Nobody

Left Side of

Architecture Vee

Everybody has a Customer

• No matter where you are on the
Architecture Vee, there will always
be someone above you that you have
to answer to (get approvals from)

www.jgartus.net© Copyright 2023-2024 John G. Artus 27

Images:

Jack: https://www.istockphoto.com/photo/close-up-back-view-of-the-mechanical-engineer-designing-3d-engine-

model-on-personal-gm1135159636-301889389

Jill: https://www.rangeroilfieldproducts.com/oilfield-engineering-design/

Jeff: https://www.huntersure.com/wp-content/uploads/2020/09/Engineering-Firm.jpg

• To get those approvals, you go off-
core in the upward direction

• To solve technical issues,
you go off-core downward
towards your lower-level
developers

System

Subsystem A Subsystem B

CI B1 CI B2 CI B3

The Entity Vee Model

Called the Entity Vee because the SE Technical Process are applied to
every Entity (every component) of the system at all levels of the system

www.jgartus.net© Copyright 2023-2024 John G. Artus 28

SE Activities at Each Level of Decomposition

• To understand the essence of the Entity Vee, we need to focus on the SE activities that occur at each
level of decomposition

• To develop a sound architectural solution, the SE Technical Processes are performed at each level of
architecture decomposition and for each entity at that level

• At the first level (system level), the only entity is the system

• Nevertheless, the SE Technical Processes are performed for that one entity

www.jgartus.net© Copyright 2023-2024 John G. Artus 29

Step-Forward One Process Step at a Time

Step-Backward as many process steps as necessary to resolve issues

However, the more you step back, the greater will be the cost

Also, the further to the right that you initiate Step-Back, the greater the cost will be

Decomposition Analysis & Resolution (DAR)

Process

Integration Analysis & Resolution (IAR)

Process

System-Level

Concept

System-Level

Requirements

System-Level

Architecture

System-Level

Design-To

Artifacts

System-Level

Design

System-Level

Build

(Implementation)

System-Level

Integration

System-Level

Validation

System-Level

Verification

System-Level

Build-To

Artifacts

To save space, not

all 14 Technical

Processes are shown

www.jgartus.net© Copyright 2023-2024 John G. Artus 30

How DAR is Implemented Among Levels (Part 1)

Subsystem B

Requirements

Subsystem B

Concept

Subsystem B

Architecture

Subsystem B

Design-To Artifacts

Subsystem B

Design

Subsystem B

Build-To Artifacts
Subsystem A

Concept

Subsystem A

Requirements

Subsystem A

Architecture

Subsystem A

Design-To Artifacts
Subsystem A

Design

Subsystem A

Build-To Artifacts

System-Level

Concept

System-Level

Requirements

System-Level

Architecture

System-Level

Design-To Artifacts
System-Level

Design

System-Level

Build-To Artifacts

Subsystem

Concepts

Subsystem

Requirements

Subsystem

Architectural

Specification

Enterprise-Level

Concepts

Stakeholder

Requirements

87 6

543

1 2

How DAR is Implemented Among Levels
(Part 1)

1. The Enterprise-Level concept is received to establish the

context for the System-level concept

2. Stakeholder requirements are received and transformed

into System Requirements

3. The System-level concepts serves as input for developing

the System-level requirements

4. Together, the System-level concept and the System-level

requirements serve as inputs to developing the System-

level architecture

5. All three of these system-level artifacts form the basis for

the System-level design artifacts which will establish the

System-level Baseline at the PDR

6. The System-level architecture decomposes and establishes

the structural elements that constitute the Subsystem-level

entities (Subsystem A and Subsystem B)

7. The process defined in steps 1 thru 7 is repeated

recursively, starting with the System-level concept being

received to establish the context for the Subsystem-level

concepts (A and B)

8. The System requirements are received and transformed

into derived requirements for Subsystem A and Subsystem B

This process repeats for each entity at each subsequent lower

level

Subsystem B

Requirements

Subsystem B

Concept

Subsystem B

Architecture

Subsystem B

Design-To Artifacts

Subsystem B

Design

Subsystem B

Build-To Artifacts
Subsystem A

Concept

Subsystem A

Requirements

Subsystem A

Architecture

Subsystem A

Design-To Artifacts
Subsystem A

Design

Subsystem A

Build-To Artifacts

System-Level

Concept

System-Level

Requirements

System-Level

Architecture

System-Level

Design-To Artifacts
System-Level

Design

System-Level

Build-To Artifacts

PDR

1

2

3

5

System

Design

CDR

7

8

9

4
System-Level

Build

Subsystem B

Build
Subsystem A

Build

www.jgartus.net© Copyright 2023-2024 John G. Artus 31

How DAR is Implemented Among Levels (Part 2)

How DAR is Implemented Among Levels
(Part 2)

1. All Design-To Artifacts from all levels are rolled up to

form the Design-To Baseline

2. The Design-To Baseline is reviewed at the PDR

3. The successful PDR opens the gate to proceed with

System-Level design

4. The product of the System Design activity is the

System-level artifact that contributes to the Build-To

Baseline at the CDR

5. The System-level design is received at the Subsystem-

level to perform the Subsystem-level design

6. Steps 4 and 5 are repeated recursively for each entity

at each subsequent lower level

7. All Build-To Artifacts from all levels are rolled up to

form the Build-To Baseline

8. The Build-To Baseline is reviewed at the CDR

9. The successful CDR opens the gate to proceed with

System-Level build

Actual “building” only occurs at the LCI level

At levels above, lower level elements are integrated to

produce the nth level element

www.jgartus.net© Copyright 2023-2024 John G. Artus 32

How IAR is Implemented Among Levels

How IAR is Implemented Among Levels

1. The process starts at the Lowest Configuration Item (LCI)

level

2. Note: There is no Integration step at the LCI level

3. Starting with the LCIs, LCIs are verified to prove that

they satisfy their requirements

4. If required, LCIs are validated to prove their useability in

the operational environment

a. LCIs are normally not validated

b. Validation normally occurs for components at the

upper 2 or 3 levels of the component hierarchy

5. The LCI entities are flowed up to the next highest level

where they are integrated together to form entities at

the new higher level

6. Steps 3 thru 5 are repeated recursively until the System-

level is reached

7. The System is verified to prove that it satisfies its

requirements

8. The System is validated to prove its useability in the

operational environment

Subsystem B

Requirements

Subsystem B

Concept

Subsystem B

Validation

System-Level

Integration

System-Level

Verification

System-Level

Validation

5

CDR

System-Level

Build

Subsystem B

Build
Subsystem A

Build

Subsystem A

Integration

Subsystem A

Verification

Subsystem A

Validation

2 3 4

7 8

Actual “validation” can occur at any level,

but the majority of the validation work occurs at the System level

The Entity Vee

• This model is based on the sequential flow of SE

Technical Processes that result in the development and

verification of a single system entity (component or

configuration item)

• The left leg represents the sequence of definition

elaboration, called Decomposition Analysis and

Resolution (DAR)

• The right leg represents the sequence of assembly and

performance assurance, called Integration Analysis and

Resolution (IAR)

• The Entity Vee is repeated for every entity of the

architecture from the system, down to the Lowest

Configuration Items (LCIs)

• At each elaboration level (tier), the method of

verification and integration to be used on the right leg of

the Vee must be defined at the time that requirements

and architecture (respectively) are developed on the left

side

• Otherwise, requirements could be created that might

never be verified, and system components could be

designed that might never integrate together properly

www.jgartus.net© Copyright 2023-2024 John G. Artus 33

Called the

“Entity Vee”

The SE Technical Processes are applied to every component at

every level of the system decomposition hierarchy, from the

System Level (Level 0) down to the lowest decomposed component

The Role of Developmental Reviews
• Alternative Systems Review (ASR)

• A technical review of the proposed conceptual solutions that
selects the solution that has the best potential to be cost-effective,
affordable, operationally effective, and suitable

• Successful completion of the ASR determines that work to develop
the system requirements may proceed

• System Requirements Review (SRR)
• A formal review conducted to ensure that system requirements

have been completely and properly identified and that a mutual
understanding between the stakeholders and developer
(contractor) exists

• Successful completion of the SRR determines that work to develop
the initial system design may proceed

• System Functional Review (SFR)
• A technical review to establishes whether the defined system

functionality can satisfy the system requirements, whether the
system’s lower-level performance requirements are fully defined
and consistent with the system concept, and whether lower-level
systems requirements trace to top-level system performance
requirements

• Successful completion of the SFR establishes the Functional
Baseline and determines that the Integrated Product Teams (IPTs)
are prepared to start preliminary design work

• Preliminary Design Review (PDR)
• A technical review that is the first opportunity for stakeholders to

closely observe the contractor’s hardware and software design
• The review establishes that each function in the Functional

Baseline has been allocated to one or more system configuration
items, establishes the existence and compatibility of the physical
and functional interfaces among the configuration items and other
items, and ensures that the system will be operationally effective

• Successful completion of the PDR establishes the Allocated Baseline
and determines that the Integrated Product Teams (IPTs) are
prepared to start detail design work

www.jgartus.net© Copyright 2023-2024 John G. Artus 34

• Critical Design Review (CDR)
• A technical review that ensures that each Configuration Item (CI)

has been captured in the detailed design documentation (a set of
detailed drawings and specifications), and ensures that that the
subsystem requirements, subsystem detailed designs, and plans for
test and evaluation form a satisfactory basis for proceeding into
system implementation and integration, thus establishing the Initial
Product Baseline

• Successful completion of the CDR establishes that the system can
proceed into system implementation (fabrication) and integration,
demonstration, and test and can meet stated performance
requirements within cost, schedule, and risk

These review types are not

standard across all industries

Off-Core Activities of the Entity Vee

• Baseline elaboration of a single entity is
performed within the core of the Entity
Vee

• Off-core activities associated with
opportunity and risk management are
pursued downward to the level of detail
necessary for issue evaluation and
resolution

• Opportunity and risk investigations are
performed either in series or in parallel
with the on-core development work

• Exploratory design and analysis can be
performed at any point in the project
cycle to investigate or prove
performance or feasibility concepts

• Off-core activities associated with
customer confirmation of the entity
definition and verification are pursued
upward to the level necessary for the
required approvals

www.jgartus.net© Copyright 2023-2024 John G. Artus 35

Core Activities

Entity Vee

Value of Off-Core Activities of the Entity Vee

• As an example, to evaluate two competing concepts, technical feasibility of the two
concepts would be modeled

• Selection might be based on performance versus cost and complexity of the system

• Customer confirmation can provide valuable in-process validation of the preferred
approach

• In the right leg, off-core investigations are used to resolve assembly and verification
anomalies

• This may require descending vertically to examine design errors, or operator error, etc

• Upward off-core user interactions obtain stakeholder confirmation or rejection of the
realized performance

• At any level of decomposition, the customer of an entity is the manager of the next
higher level of decomposition

www.jgartus.net© Copyright 2023-2024 John G. Artus 36

In the Entity Vee, off-core interactions address individual entity solutions

and not the integration of the whole architecture

Integration of the whole architecture is modeled by the Architecture Vee

The Dual-Vee Model

www.jgartus.net© Copyright 2023-2024 John G. Artus 37

Combines the Architecture Vee with the Entity Vee

• In order to convert a set of user needs into a
deployed system that satisfies those needs
requires that a solution be found for each
entity at each level of architecture
decomposition

• This can be visualized by positioning Entity Vees
orthogonal to the Architecture Vee

• For each entity of the Architecture Vee there is
a corresponding Entity Vee that addresses the
entity development

• For example, the Architecture Vee here shows
two subsystems (there could be more)

• The two Entity Vees shown represent the
process for creating those two subsystems

• This figure reiterates the relationship of the
DAR and IAR processes to the Architecture Vee

• It elaborates further on the interrelationships
by superimposing the DAR and IAR on the Entity
Vees that they support

www.jgartus.net© Copyright 2023-2024 John G. Artus 38

Architecture Vee

Entity Vee

Addresses the architecture component hierarchy (the hierarchy of system entities)

Addresses the application of technical processes for each architectural entity

Called the

“Dual Vee”

Applications of the Vee Model

Considerations for Technical Development Tactics when Applying the Vee Model

www.jgartus.net© Copyright 2023-2024 John G. Artus 39

www.jgartus.net© Copyright 2023-2024 John G. Artus 40

Tactical Development and Delivery Approach

Development

Model

Primary

Development

Method

Secondary

Development

Method

Delivery

Method

Unified Incremental

Linear Evolutionary

Single Multiple

Linear Evolutionary

Single MultipleSingle

Spiral

Single Multiple

Dual-VeeWaterfall

Development and delivery decisions

are driven by the business case in

response to the demands of the

stakeholders

This results in a business strategy that

is achieved through implementation

tactics

The systems engineer needs to fully

appreciate the flexibility of the

project to accommodate and benefit

from the various tactical development

and delivery approaches

To arrive at the best tactical decision,

the project manager and the systems

engineer must collaborate on a

development approach

This decision is then baselined and

communicated to the project team so

that the tactics can be built into all

planning

Primary Development and Delivery Approaches

• Primary development methods
• Unified

• Effective for systems in which decomposition into an architecture with separate deliverable elements
or modules is not practical

• Example: the physical structure of a spacecraft
• Incremental

• Decompose the concept into an architecture having entities to be developed incrementally (i.e.,
separately for later integration)

• Allows parallel development, assigning experts to each increment
• Exhibits flexibility to accommodate funding and schedule constraints
• Incremental development can plan for subsequent upgrading by increment

• Example of incremental approach: Automobile Product Line
• Engines, chassis, and transmissions are separately developed
• Then integrated into a complete automobile at the final assembly plant
• Increments that are later discovered to be faulty can be recalled and replaced in the field

• Example of incremental approach: Software Development
• Incremental development can start with the most important requirement
• The increment is complete when the increment satisfies the requirement
• Then building on that verified increment, the thrust would be to satisfy the second requirement and so on
• With this incremental approach, each increment is built on the previous set resulting in one single delivery
• However, later upgrades to internal increments are not possible
• In this case, the entire integrated set of increments must be upgraded as a whole

www.jgartus.net© Copyright 2023-2024 John G. Artus 41

Secondary Development and Delivery Approaches

•Secondary development methods
• Linear

• A single-path approach

• The requirements and the solution are sufficiently well understood

• Allows straight-forward design and implementation

• No iteration or experimentation is required or desired

• Example: Installation of electrical and plumbing systems in home construction is a linear approach
developed over years of experience

• Evolutionary
• Experimentation or investigation is necessary to determine the best solution

• Works well for

• Uncertain requirements

• Pursuit of opportunities and risks

• Pursuit of alternate concepts and solutions

• The evolutionary approach is common to research projects

• Disadvantage: unpredictability of progress

• As a result, cost and schedule estimates are guesses and are rarely met

www.jgartus.net© Copyright 2023-2024 John G. Artus 42

Delivery Method

•For unified, linear development
• Only a single delivery occurs

• Incremental, with or without evolutionary development, requires a
decision
• Field the system in a single delivery

• Or deliver increments and versions of increments to gradually increase solution capability over
time

•This decision for incremental can be driven by
• The urgency for a solution to be fielded

• The staggered availability of functional capability, funding limitations, regulatory constraints,
or any other factors making staged fielding beneficial

www.jgartus.net© Copyright 2023-2024 John G. Artus 43

Example: Unified – Evolutionary Development
with Multiple Version Deliveries

Example: Large Special-Purpose Firefighting Aircraft Program
• Evolution 1: Does it fly?

• Evolution 2: Does firefighting equipment work?

• Evolution 3: Does it integrate well with all other firefighting systems?

Does it fly?

Yes: Continue

No: Cancel

Does

firefighting

equipment

work?

Yes: Continue

No: Cancel

Does it

integrate with

all other

systems?

Yes: Deliver

No: Fix or Cancel

PRODUCT EVOLUTION

www.jgartus.net© Copyright 2023-2024 John G. Artus 44

https://www.kcrw.com/news/articles/firefighters-are-fuming-about-drones-over-wildfires

System
Test

https://www.kcrw.com/news/articles/firefighters-are-fuming-about-drones-over-wildfires

Example: Incremental – Linear Development
with Multiple Incremental Deliveries

Example: San Jose, CA Light Rail Program
• Phase 1: First segment of track (10-miles in 1990)

• Phase 2: Second segment of track (18-miles in 1993)

• Phase X: Final segment(s) of track to additional cities (to be completed in 2027)

www.jgartus.net© Copyright 2023-2024 John G. Artus 45

System
Test

San Jose, CA Light Rail Stations Map

https://en.wikipedia.org/wiki/File:VTA_Light_Rail_map_line_history.svgPRODUCT EVOLUTION

https://en.wikipedia.org/wiki/File:VTA_Light_Rail_map_line_history.svg

Example: Incremental – Linear Development
with Single Delivery

Example: St. Gotthard Alps Tunnel Program
• Phase 1: First section of tunnel (Sedrum in 1996)

• Phase 2: Second section of tunnel (Amsteg in 1999)

• Phase X: Final section of tunnel (Commissioned in 2016)

www.jgartus.net© Copyright 2023-2024 John G. Artus 46

Map Showing Route of St. Gotthard Alps Tunnel

https://en.wikipedia.org/wiki/File:Map_Gotthard-Basistunnel.png

Route could only

be used when

fully completed

PRODUCT EVOLUTION

https://en.wikipedia.org/wiki/File:Map_Gotthard-Basistunnel.png

Example: Incremental-Linear and Evolutionary Development
with Single or Multiple Version Deliveries

www.jgartus.net© Copyright 2023-2024 John G. Artus 47

PRODUCT EVOLUTION

Evolutionary Development – Applying Lessons Learned

www.jgartus.net© Copyright 2023-2024 John G. Artus 48

Feed-Forward Results of

Previous Increment’s

Reviews

Programs should take every

opportunity to learn from one

review, and apply lessons

learned to the next cycle prior

to the next cycle’s next review

Example Lifecyle Model (DoD)

• MDD - Materiel Development Decision
• Decision to proceeed with system development

• CDD - Capability Development Document
• Specifies the operational requirements for the system that will deliver the capability that meets the operational

performance criteria

• DRFPRD - Development RFP Release Decision Point
• Ensures that an executable and affordable program has been planned using a sound business and technical approach

• FRPDR - Full-Rate Production Decision Review
• Assess the results of initial OT&E and initial manufacturing to determine whether to proceed to FRP

• IOC – Initial Operational Capability

• FOC – Full Operational Capability

Major SE Technical Reviews

www.jgartus.net© Copyright 2023-2024 John G. Artus 49

References

• Forsberg, Kevin; Mooz, Hal; Cotterman, Howard (2005). Visualizing Project Management: Models
and Frameworks for Mastering Complex Systems, 3rd Edition, John Wiley & Sons, Inc., Hoboken,
New Jersey

• Systems Engineering Body of Knowledge (SEBoK) v2.7
https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)

• INCOSE G2SEBOK v3.30 http://g2sebok.incose.org/app/qualsys/view_by_id.cfm?ID=INCOSE%20G2SEBOK%203.30&ST=F

• Walden, D., Roedler, G., Forsberg, K., Hamelin, R., Shortell, T. (2015). INCOSE Systems
Engineering Handbook, 4th Edition, John Wiley & Sons, Inc., Hoboken, New Jersey

• Royce, W. (1970). Managing the Development of Large Software Systems
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf

• Boehm , B. (1987) A Spiral Model of Software Development and Enhancement
https://www.cse.msu.edu/~cse435/Homework/HW3/boehm.pdf

• AcqNotes page on Alternative System Review https://acqnotes.com/acqnote/acquisitions/alternative-systems-review

• AcqNotes page on System Requirements Review https://acqnotes.com/acqnote/acquisitions/system-requirements-review-srr

• AcqNotes page on System Functional Review https://acqnotes.com/acqnote/acquisitions/system-functional-review

• AcqNotes page on Preliminary Design Review https://acqnotes.com/acqnote/acquisitions/preliminary-design-review

• AcqNotes page on Critical Design Review https://acqnotes.com/acqnote/acquisitions/critical-design-review

• AcqNotes page on Configuration Baseline https://acqnotes.com/acqnote/careerfields/configuration-baselines

• AcqNotes page on Technical Baseline https://acqnotes.com/acqnote/careerfields/technical-baseline

© Copyright 2023-2024 John G. Artus 50www.jgartus.net

https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
http://g2sebok.incose.org/app/qualsys/view_by_id.cfm?ID=INCOSE%20G2SEBOK%203.30&ST=F
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
https://www.cse.msu.edu/~cse435/Homework/HW3/boehm.pdf
https://acqnotes.com/acqnote/acquisitions/alternative-systems-review
https://acqnotes.com/acqnote/acquisitions/system-requirements-review-srr
https://acqnotes.com/acqnote/acquisitions/system-functional-review
https://acqnotes.com/acqnote/acquisitions/preliminary-design-review
https://acqnotes.com/acqnote/acquisitions/critical-design-review
https://acqnotes.com/acqnote/careerfields/configuration-baselines
https://acqnotes.com/acqnote/careerfields/technical-baseline

	Slide 1: SE Life Cycle Models
	Slide 2: About This Courseware
	Slide 3: What is a Life Cycle Model?
	Slide 4: Life Cycle Model Terminology
	Slide 5: Examples of Specific Life Cycle Models
	Slide 6: Typical Phases of the SE Life Cycle
	Slide 7: Typical Stages of the SE Life Cycle (continued)
	Slide 8: Typical Stages of the SE Life Cycle (continued)
	Slide 9: Systems Engineering Technical Processes
	Slide 10: Systems Engineering Technical Processes (continued)
	Slide 11: Mapping the 14 SE Technical Processes to a Generic Life Cycle Model
	Slide 12: More Realistic Representation of Technical Process Activities
	Slide 13: Major Types of Life Cycle Models
	Slide 14: Waterfall Model
	Slide 15: Spiral Model
	Slide 16: The SE Vee Life Cycle Models
	Slide 17: The Architecture Vee Model
	Slide 18: Architecture Vee is Based on Expanding Baselines
	Slide 19: Baselining of a Product Configuration
	Slide 20: Types of Configuration Baselines
	Slide 21: Technical Baselines
	Slide 22: Progress of Configuration Baselining
	Slide 23: Features of the Architecture Vee
	Slide 24: Architecture Vee showing Baseline Development
	Slide 25: Architecture Vee Core Activities and Baseline Maturation
	Slide 26: Architecture Vee Off-Core Activities
	Slide 27: Everybody has a Customer
	Slide 28: The Entity Vee Model
	Slide 29: SE Activities at Each Level of Decomposition
	Slide 30: How DAR is Implemented Among Levels (Part 1)
	Slide 31: How DAR is Implemented Among Levels (Part 2)
	Slide 32: How IAR is Implemented Among Levels
	Slide 33: The Entity Vee
	Slide 34: The Role of Developmental Reviews
	Slide 35: Off-Core Activities of the Entity Vee
	Slide 36: Value of Off-Core Activities of the Entity Vee
	Slide 37: The Dual-Vee Model
	Slide 38: Combines the Architecture Vee with the Entity Vee
	Slide 39: Applications of the Vee Model
	Slide 40: Tactical Development and Delivery Approach
	Slide 41: Primary Development and Delivery Approaches
	Slide 42: Secondary Development and Delivery Approaches
	Slide 43: Delivery Method
	Slide 44: Example: Unified – Evolutionary Development with Multiple Version Deliveries
	Slide 45: Example: Incremental – Linear Development with Multiple Incremental Deliveries
	Slide 46: Example: Incremental – Linear Development with Single Delivery
	Slide 47: Example: Incremental-Linear and Evolutionary Development with Single or Multiple Version Deliveries
	Slide 48: Evolutionary Development – Applying Lessons Learned
	Slide 49: Example Lifecyle Model (DoD)
	Slide 50: References

