
1

Complex Systems

John G. Artus
BSEE

MSSE

INCOSE ESEP

www.jgartus.net© Copyright 2022-2023 John G. Artus

Lecture 03, v03

About This Courseware

• The majority of the material presented in this course is sourced from the
textbook “System Architecture” by Edward Crawley, Bruce Cameron, and Daniel
Selva

• I, John Artus, make no claim of ownership of the material sourced from this
textbook

• I, John Artus, am using the material sourced from this textbook, and other
indicated sources, as content for this courseware for educational purposes only

• This courseware lecture material has been sourced, interpreted, assembled,
formatted, and copyrighted by John G. Artus for use in this educational context

• Anyone may freely access, and reuse this material in an educational context
provided the copyright owner, John G. Artus, is recognized as the interpreter,
assembler, and formatter of the source material used in the generation of this
courseware, and provided that Edward Crawley, Bruce Cameron, and Daniel Selva
are recognized as authors of the textbook “System Architecture” from which the
majority of the content of this courseware has been sourced

www.jgartus.net© Copyright 2022-2023 John G. Artus 2

Complexity

• A complex system has many interrelated, interconnected, or
interwoven entities and relationships

• Complexity is driven into systems by “asking more” of them
• More function
• More performance
• More robustness
• More flexibility
• ...

• It is also driven into systems by asking systems to work together and
interconnect with increasing scale and scope

• Complex systems require a great deal of information to specify and
describe

• Ways of measuring complexity
• Based on the information content of the description of the system
• Categorizing what the system does (a function-based approach)

www.jgartus.net© Copyright 2022-2023 John G. Artus 3

Complexity (continued)

• An idea closely related to complex is complicated
• Takes into consideration the finite ability of the human to perceive and understand

complexity
• Complicated things have high apparent complexity
• They are complicated because they stretch or overwhelm our ability to understand

them

• Dealing with complexity is not new
• Over the last century, systems and the context in which they operate have become

more complex
• This increasing complexity has strained our ability to comprehend systems

• Our job as architects is to train our minds to understand complex systems
so that they do not appear to be complicated to us

• We should seek to build architectures that do not appear complicated to all
the others who have to work on the system — designers, builders, operators

• The task of good architecture design can be summarized as follows
• Build systems of the necessary level of complexity that are not complicated

www.jgartus.net© Copyright 2022-2023 John G. Artus 4

Decomposition

• Decomposition is the dividing of an entity into smaller pieces
or constituents

• It is one of the most powerful tools in our toolset for dealing with
complexity

• Break a problem down into smaller problems until each is tractable

• Sometimes defining decomposition is easy
• When the system is made up of distinct elements

• Sometimes the system is modular
• This suggests use of decomposition of the modular structure

• Sometimes the system is integral
• Decomposition can then be somewhat arbitrary since there is no

clear separation of components

www.jgartus.net© Copyright 2022-2023 John G. Artus 5

Decomposition (continued)

• The difficulty with breaking things apart is not in the
breaking apart, but in the process of later bringing together
the decomposed entities to build the whole

• This process is often called integration

• In the formal domain
• Form aggregates

• We have to worry about the physical/logical fit between the elements as
they are brought together

• In the functional domain
• We decompose functions into more basic functions

• In recombining the entities of function, we encounter emergence: the real
challenge

www.jgartus.net© Copyright 2022-2023 John G. Artus 6

Hierarchy

• In a hierarchical system, the system entities belong to layers or tiers
• Layers are ranked one above the other

• The top-most level of a system hierarchy is referred to as Level 0 (or Tier 0)
• Below that, we refer to Level 1 (down), and Level 2 (down), and so on

• Hierarchy is can be used to understand and reason about complexity in systems

• What causes some tiers to be higher in the hierarchy than others?
• They have more scope

• Governors rank above mayors because they have more scope (a state is larger than a city)

• They have more importance or performance
• Black belts rank above brown belts because they perform to a higher standard and have greater

skills

• Their functions entail more responsibility
• Presidents rank above vice presidents because they have more responsibility

• Hierarchy does not imply that a system element on a particular level is
subordinate to any specific element at the next higher level

• That observation only occurs when performing hierarchical decomposition

www.jgartus.net© Copyright 2022-2023 John G. Artus 7

Hierarchical Decomposition

• Often, decomposition and hierarchy are combined into a multilevel or
hierarchical decomposition: a decomposition with more than two levels

• Organizing a hierarchical system in this way appeals to our desire to group things
in sets of seven +/– two

• System classification scheme:
• Simple systems

• A system that can be completely described by a one-level decomposition diagram

• There are generally no more than seven +/– two elements of form at Level 1

• When you get to these elements, they are more or less atomic parts

• Systems of medium complexity
• A system can be represented by a two-level decomposition diagram

• There are no more than (seven +/– two) parts — that is, no more than about 81 entities

• Systems of complex complexity, or “complex” systems
• A complex system has the same representational diagram as a medium-complexity system

• At the second level (down) there are still only abstractions of things below

• These are significantly harder to analyze, and more common

www.jgartus.net© Copyright 2022-2023 John G. Artus 8

Hierarchical Decomposition (continued)

• One rarely sees a single decomposition diagram more than
two levels deep

• There are two reasons why such drawings are not frequently
used

• A three-level diagram could have as many as (seven +/– two)
elements at the third level

• Or as many as 729
• This is far more than humans can routinely process

• When we look down into the organization of a system, we find that
we know the Level 1 elements fairly well

• We more or less comprehend things on the next level (Level 2)
• Beyond that (Level 3 and lower) our understanding and appreciation of the

system organization is much less clear

www.jgartus.net© Copyright 2022-2023 John G. Artus 9

www.jgartus.net© Copyright 2022-2023 John G. Artus 10

Two Levels (Tiers) of Decomposition

Tier 0

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 1

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

1 element at Tier 0

7 elements at Tier 1

49 elements at Tier 2

If fully populated, the
number of entities
quickly becomes
overwhelming

Hierarchical Decomposition (continued)

• The designation of Level 0 as “the system” is somewhat arbitrary and
depends on the viewpoint of the architect

• There are dozens of words to designate the layers below “the system”
• modules, assemblies, sub-assemblies, functions, racks, online replacement

units (ORUs), routines, committees, task forces, units, components, sub-
components, parts, segments, sections, chapters, and so on

• Unfortunately, there is little consensus about how these terms are
applied

• One person’s assembly is another person’s component

• There are relatively fewer words for the levels above “the system”
• People speak of systems of systems (SoS), family of systems (FoS), complexes,

collections, etc

• If needed, we will call these Level 1 (up) and Level 2 (up)

www.jgartus.net© Copyright 2022-2023 John G. Artus 11

Atomic Parts

• The term “atomic part” does not have an exact definition

• In mechanical systems, atomic parts are those that cannot easily
be “taken apart”

• In information systems, the definition of “atomic part” is even
fuzzier

• A useful test is to call something an atomic part when
• It possesses a fundamental semantic meaning (as does a word or an instruction)

• It is a unit of data or information

• These words, instructions, or data units would include details, of course

• Because all information is an abstraction, defining meaningful
abstractions of abstractions is necessarily more fuzzy

• Call it a part if it loses meaning when you take it apart

www.jgartus.net© Copyright 2022-2023 John G. Artus 12

Special Logical Relationships
• Class/Instance Relationship

• More commonly used in software than in hardware
• A class is a construct that describes the general features of something, and an instance is a specific occurrence of the class
• The instance is often referred to as the instantiation of the class
• The idea of class/instance is quite common

• The Specialization Relationship
• Describes the connection between a general object and a set of more specific objects
• Used extensively in design
• Akin to the concept of inheritance in object-oriented programming

• A class can be created starting from a more general class
• From which some attributes and functionality are inherited
• And to which new attributes and functionality are added

• Iteration
• Iteration is commonly and very explicitly used in software engineering
• Occurs when a process is performed several times at the same level of a hierarchy
• Occurs when a routine or function uses itself at the same level
• Occurs when entities or relationships are used in a self-similar way

• Recursion
• Recurrence is commonly and very explicitly used in software engineering
• Occurs when a process or object uses itself within the whole
• Occurs when a routine or function uses itself
• Occurs when an approach used at one level of a system is used again at lower levels within the system
• Occurs when entities or relationships are used in a self-similar way

www.jgartus.net© Copyright 2022-2023 John G. Artus 13

Class/Instance Relationships

A class is a construct that describes the general features of something,

and an instance is a specific occurrence of a class

www.jgartus.net© Copyright 2022-2023 John G. Artus 14

• Serves like class definition in software
• Defines the properties of block types (properties are not

shown in the above example)
• Used to “type” the usage of blocks in an IBD
• The example above shows the decomposition of the

“whole” Refrigerator block into its component “parts”
(represented by the black diamond)

• This BDD describes the “definition” of a “Refrigerator”
• If any of the components defined here are missing

in a deployment, then the system does not fit this
definition of Refrigerator

• Serves like an object instance in software
• Describes the use of one or more of the block types described

in a BDD
• The IBD frame represents the “whole”
• In this case, the frame is the Refrigerator

• The blocks inside the IBD frame represent the Refrigerator’s
“parts” in one particular configuration (“usage” – meaning how
they are arranged, or connected together)

• There could be other arrangements or configurations
• Parts indicate what “type” they are

• Ctrl : Controls – says “ctrl is of type Controls”
• Parts inherit all the properties of their type

The instance is often

referred to as the

instantiation of the class

The idea of class /

instance is quite common

In Systems Engineering

the most common

example is that of the

definition of a block

(class) and description of

a particular usage of a

block (an intance of that

class)

Specialization Relationship

• Describes the connection between a general object
and a set of more specific objects

• Used extensively in design

• Akin to the concept of inheritance in object-oriented
programming

• A class can be created starting from a more general class

• From which some attributes and functionality are
inherited

• In this example, the superclass “Camera” is
specialized into two subclasses

• The “Wired Camera” class adds features, such as
Ethernet Card, that specialize the subclass apart from the
more general class “Camera”

• Equivalently, the “Wireless Camera” defines parts, such
as WiFi Card, that are unique to that subclass of Camera

www.jgartus.net© Copyright 2022-2023 John G. Artus 15

“A Practical Guide to SysML” by Friedenthal, Moore, and Steiner

Iteration

• Occurs when a process is
used at one level of a
system and then is used
again, repeatably, at the
same level within the system

• In the example shown, the
same process is used
multiple times to allocate a
system requirement to be
implemented by a specific
system component within
the same level of the system
hierarchy

www.jgartus.net© Copyright 2022-2023 John G. Artus 16

«requirement»
Vehicle Acceleration

Requirement

«block»
Powerplant Subsystem

«requirement»
Vehicle Stopping

Requirement

«block»
Braking Subsystem

«requirement»
Vehicle Steering

Requirement

«block»
Suspension Subsystem

«allocate»

«allocate»

«allocate»

Recursion

• Occurs when an approach
used at one level of a
system is used again at other
levels within the system

• In the example shown, the
Architecture Definition
Process is repeated at each
level of the system
hierarchy, as well as within
each element of a given
level of the hieararchy

www.jgartus.net© Copyright 2022-2023 John G. Artus 17

Adapted from Faisandier, Alan (2012)

etc...

Reasoning Through Complex Systems

• Top-down Approach
• Refers to the direction in which you approach a system
• Start from the goals of a system and proceed to the concept and then the high-level architecture
• Then develop the architecture in increasing detail until you reach the smallest entities of interest

to you
• This method follows the “left-hand side” of the systems engineering VEE model

• Bottom-up Approach
• Think about the artifacts, capabilities, or services that are available in the lowest-level entities
• Build upward from them, predicting emergence

• Outer-In Approach
• Start at both top and bottom
• Work toward the middle

• Middle-Out
• Start at some arbitrary point in the system hierarchy
• Try to reason one or two levels up or down

• There is really no top or bottom to truly complex systems
• In reality we end up applying a middle-out approach

www.jgartus.net© Copyright 2022-2023 John G. Artus 18

Good architects should be able to apply all of these approaches

v02

Zig-Zagging

• Zigzagging
• When reasoning about a system, alternate between reasoning in the form domain and

reasoning in the function domain

• Start in one domain

• Work as long as is practical

• Then switch to the other domain

• This alternating pattern of thinking continues down through all levels of the
system design

www.jgartus.net© Copyright 2022-2023 John G. Artus 19

References

1. Crawley, Edward; Cameron, Bruce; Selva, Daniel (2016). System Architecture: Strategy and Product
Development for Complex Systems, Pearson Higher Education Inc, Hoboken, NJ

2. S. Friedenthal. A. Moore, R. Steiner. (2019). A Practical Guide to SysML, The Systems Modeling Language,
Third edition, Elsevier Inc, Waltham, MA

3. Forsberg, Kevin; Mooz, Hal; Cotterman, Howard (2005). Visualizing Project Management: Models and
Frameworks for Mastering Complex Systems, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey

www.jgartus.net© Copyright 2022-2023 John G. Artus 20

	Complex Systems
	About This Courseware
	Complexity
	Complexity (continued)
	Decomposition
	Decomposition (continued)
	Hierarchy
	Hierarchical Decomposition
	Hierarchical Decomposition (continued)
	Two Levels (Tiers) of Decomposition
	Hierarchical Decomposition (continued)
	Atomic Parts
	Special Logical Relationships
	Class/Instance Relationships
	Specialization Relationship
	Iteration
	Recursion
	Reasoning Through Complex Systems
	Zig-Zagging
	References

