Complex Systems

John G. Artus

BSEE
MSSE
INCOSE ESEP

About This Courseware

 The majority of the material presented in this course is sourced from the
textbook “System Architecture” by Edward Crawley, Bruce Cameron, and Daniel
Selva

e |, John Artus, make no claim of ownership of the material sourced from this
textbook

e |, John Artus, am using the material sourced from this textbook, and other
indicated sources, as content for this courseware for educational purposes only

e This courseware lecture material has been sourced, interpreted, assembled,
formatted, and copyrighted by John G. Artus for use in this educational context

 Anyone may freely access, and reuse this material in an educational context
provided the copyright owner, John G. Artus, is recognized as the interpreter,
assembler, and formatter of the source material used in the generation of this
courseware, and provided that Edward Crawley, Bruce Cameron, and Daniel Selva
are recognized as authors of the textbook “System Architecture” from which the
majority of the content of this courseware has been sourced

© Copyright 2022-2023 John G. Artus www.jgartus.net 2

Complexity

e A complex system has man?/ interrelated, interconnected, or
interwoven entities and relationships

e Complexity is driven into systems by “asking more” of them
e More function
 More performance
e More robustness
e More flexibility

e |t is also driven into systems by asking systems to work together and
interconnect with increasing scale and scope

e Complex systems require a great deal of information to specify and
describe

 Ways of measuring complexity
e Based on the information content of the description of the system
e Categorizing what the system does (a function-based approach)

© Copyright 2022-2023 John G. Artus www.jgartus.net 3

Complexity (continued)

* An idea closely related to complex is complicated

» Takes into consideration the finite ability of the human to perceive and understand
complexity

e Complicated things have high apparent complexity
 They are complicated because they stretch or overwhelm our ability to understand

them
e Dealing with complexity is not new

e Over the last century, systems and the context in which they operate have become
more complex

» This increasing complexity has strained our ability to comprehend systems

* Our job as architects is to train our minds to understand complex systems
so that they do not appear to be complicated to us

» We should seek to build architectures that do not appear complicated to all
the others who have to work on the system — designers, builders, operators

» The task of good architecture design can be summarized as follows
» Build systems of the necessary level of complexity that are not complicated

© Copyright 2022-2023 John G. Artus www.jgartus.net 4

Decomposition

* Decomposition is the dividing of an entity into smaller pieces
or constituents

o |t is one of the most powerful tools in our toolset for dealing with
complexity
» Break a problem down into smaller problems until each is tractable

e Sometimes defining decomposition is easy
 When the system is made up of distinct elements

e Sometimes the system is modular
 This suggests use of decomposition of the modular structure

e Sometimes the system is integral

» Decomposition can then be somewhat arbitrary since there is no
clear separation of components

© Copyright 2022-2023 John G. Artus www.jgartus.net

Decomposition (continued)

e The difficulty with breaking things apart is not in the
breaking apart, but in the process of later bringing together
the decomposed entities to build the whole

 This process is often called integration

e In the formal domain
 Form aggregates

 We have to worry about the physical/logical fit between the elements as
they are brought together

* In the functional domain
 We decompose functions into more basic functions

 In recombining the entities of function, we encounter emergence: the real
challenge

© Copyright 2022-2023 John G. Artus www.jgartus.net

6

Hierarchy

* In a hierarchical system, the system entities belong to layers or tiers
» Layers are ranked one above the other

e The top-most level of a system hierarchy is referred to as Level 0 (or Tier 0)
» Below that, we refer to Level 1 (down), and Level 2 (down), and so on

» Hierarchy is can be used to understand and reason about complexity in systems

 What causes some tiers to be higher in the hierarchy than others?
* They have more scope
 Governors rank above mayors because they have more scope (a state is larger than a city)

* They have more importance or performance

. Blial(l:k belts rank above brown belts because they perform to a higher standard and have greater
skills

» Their functions entail more responsibility
* Presidents rank above vice presidents because they have more responsibility

» Hierarchy does not imply that a system element on a particular level is
subordinate to any specific element at the next higher level

* That observation only occurs when performing hierarchical decomposition

© Copyright 2022-2023 John G. Artus www.jgartus.net

Hierarchical Decomposition

» Often, decomposition and hierarchy are combined into a multilevel or
hierarchical decomposition: a decomposition with more than two levels

* Organizing a hierarchical system in this way appeals to our desire to group things
in sets of seven +/- two

» System classification scheme:
e Simple systems
» Asystem that can be completely described by a one-level decomposition diagram
» There are generally no more than seven +/- two elements of form at Level 1
 When you get to these elements, they are more or less atomic parts
» Systems of medium complexity
» Asystem can be represented by a two-level decomposition diagram
 There are no more than (seven +/- two) parts — that is, no more than about 81 entities
« Systems of complex complexity, or “complex” systems
» A complex system has the same representational diagram as a medium-complexity system
» At the second level (down) there are still only abstractions of things below
* These are significantly harder to analyze, and more common

© Copyright 2022-2023 John G. Artus www.jgartus.net

Hierarchical Decomposition (continued)

* One rarely sees a single decomposition diagram more than
two levels deep

. Theclj’e are two reasons why such drawings are not frequently
use

A three-level diagram could have as many as (seven +/- two)
elements at the third level
e Or as many as 729
e This is far more than humans can routinely process
 When we look down into the organization of a system, we find that
we know the Level 1 elements fairly well
 We more or less comprehend things on the next level (Level 2)

e Beyond that (Level 3 and lower) our understanding and appreciation of the
system organization is much less clear

© Copyright 2022-2023 John G. Artus www.jgartus.net 9

Two Levels (Tiers) of Decomposition

ier O 1 element at Tier O

Tier 1| |Tier 1| |Tier 1| (Tier 1| |Tier 1| |Tier 1| (Tier 1 7 elements at Tier 1

HTier 2|+ Tier 2|HTier 2|HTier 2|HTier 2{qTier 2|+ Tier 2
Tier 2
—Tier 2|+ Tier 2|HTier 2|5 Tier 2|-Tier 2|5 Tier 2
—Tier 2|+ Tier 2|-Tier 2|qTier 2
—Tier 2|+ Tier 2|HTier 2|5 Tier 2
—Tier 2|+ Tier 2|Tier 2
~Tier 2|5 Tier 2|5Tier 2

—Tier 2|HTier 2|HTier 2|HTier 2|HTier 2 ier 2

ier 2

Tier 2 49 elements at Tier 2

Tier 2
Tier 2
Tier 2

If fully populated, the
number of entities
quickly becomes
overwhelming

www.jgartus.net 10

Hierarchical Decomposition (continued)

* The designation of Level 0 as “the system” is somewhat arbitrary and
depends on the viewpoint of the architect

e There are dozens of words to designate the layers below “the system
 modules, assemblies, sub-assemblies, functions, racks, online replacement
units (ORUs), routines, committees, task forces, units, components, sub-

components, parts, segments, sections, chapters, and so on
e Unfortunately, there is little consensus about how these terms are
applied
* One person’s assembly is another person’s component
* There are relatively fewer words for the levels above “the system”

» People speak of systems of systems (50S), family of systems (FoS), complexes,
collections, etc

 If needed, we will call these Level 1 (up) and Level 2 (up)

b3

© Copyright 2022-2023 John G. Artus www.jgartus.net 11

Atomic Parts

e The term “atomic part” does not have an exact definition

 In mechanical systems, atomic parts are those that cannot easily
be “taken apart”

e In information systems, the definition of “atomic part” is even
fuzzier

» A useful test is to call something an atomic part when

|t possesses a fundamental semantic meaning (as does a word or an instruction)
|t is a unit of data or information

* These words, instructions, or data units would include details, of course

» Because all information is an abstraction, defining meaningful
abstractions of abstractions is necessarily more fuzzy

 Call it a part if it loses meaning when you take it apart

© Copyright 2022-2023 John G. Artus www.jgartus.net 12

Special Logical Relationships

» Class/Instance Relationship
e More commonly used in software than in hardware
e Aclass is a construct that describes the general features of something, and an instance is a specific occurrence of the class
» The instance is often referred to as the instantiation of the class
» The idea of class/instance is quite common

* The Specialization Relationship
» Describes the connection between a general object and a set of more specific objects
» Used extensively in design
» Akin to the concept of inheritance in object-oriented programming
» Aclass can be created starting from a more general class
» From which some attributes and functionality are inherited
» And to which new attributes and functionality are added

* Iteration
» Iteration is commonly and very explicitly used in software engineering
» Occurs when a process is performed several times at the same level of a hierarchy
* Occurs when a routine or function uses itself at the same level
* Occurs when entities or relationships are used in a self-similar way

* Recursion
» Recurrence is commonly and very explicitly used in software engineering
* Occurs when a process or object uses itself within the whole
* Occurs when a routine or function uses itself
* Occurs when an approach used at one level of a system is used again at lower levels within the system
e Occurs when entities or relationships are used in a self-similar way

© Copyright 2022-2023 John G. Artus www.jgartus.net (K]

Class/Instance Relationships

A class is a construct that describes the general features of something,
and an instance is a specific occurrence of a class

The instance is often
referred to as the
instantiation of the class

The idea of class /
instance is quite common

In Systems Engineering
the most common
example is that of the
definition of a block
(class) and description of
a particular usage of a
block (an intance of that
class)

© Copyright 2022-2023 John G. Artus

bdd [package] System Structure [Refrigerator System]

«block»
¢
«block» «block» «block»
Compressor Condenser Evaporator

‘@ 1 | wallpwr
«block»

«block» «block»
Refrigerator

Wall Power
Frame Supply

Serves like class definition in software

Defines the properties of block types (properties are not

shown in the above example)

Used to “type” the usage of blocks in an IBD

The example above shows the decomposition of the

“whole” Refrigerator block into its component “parts”

(represented by the black diamond)

This BDD describes the “definition” of a “Refrigerator”
If any of the components defined here are missing
in a deployment, then the system does not fit this
definition of Refrigerator

«block»
Internal Power
Distribution

ibd [block Refrigerator Non-Mechanical Config]

«block» «block»

-] «block» 1 + 1
ctrl : Controls Control comp: Compressor Refrigerant cond : Condenser
i [,] m
T Signal T T Refrigerant
Internal
El «block» 17

Power Refrigerant evap : Evaporator

Internal
Power

pwrdist : Internal [
Power Supply

<] wallpwr : Wall

Electrical | Power Supply

Serves like an object instance in software
Describes the use of one or more of the block types described
ina BDD

» The IBD frame represents the “whole”

* In this case, the frame is the Refrigerator
The blocks inside the IBD frame represent the Refrigerator’s
“parts” in one particular configuration (“usage” - meaning how
they are arranged, or connected together)
There could be other arrangements or configurations
Parts indicate what “type” they are

e Ctrl: Controls - says “ctrl is of type Controls”
Parts inherit all the properties of their type

www.jgartus.net 14

Specialization Relationship

» Describes the connection between a general object
and a set of more specific objects

» Used extensively in design

e Akin to the concept of inheritance in object-oriented
programming
» Aclass can be created starting from a more general class

* From which some attributes and functionality are
inherited

* In this example, the superclass “Camera” is
specialized into two subclasses

» The “Wired Camera” class adds features, such as
Ethernet Card, that specialize the subclass apart from the
more general class “Camera”

« Equivalently, the “Wireless Camera” defines parts, such
as WiFi Card, that are unique to that subclass of Camera

© Copyright 2022-2023 John G. Artus

www.jgartus.net

15

Iteration -

e Occurs when a process is
reauirements used at one level of a
s (O | oo system and then is used
SAHrEmEn again, repeatably, at the
same level within the system

 In the example shown, the
same process is used
multiple times to allocate a
system requirement to be
implemented by a specific
system component within

«requirement> allocate- ~block- the same level of the system

Vehicle Steering Suspension Subsystem

Requirement hierarchy

«requirement» <blocks
Vehicle Stopping «allocate»
Requirement

Braking Subsystem

© Copyright 2022-2023 John G. Artus www.jgartus.net 16

Recursion

Occurs when an approach
used at one level of a
system is used again at other
levels within the system

* In the example shown, the
Architecture Definition
Process is repeated at each
level of the system
hierarchy, as well as within
each element of a given
level of the hieararchy

isandier, Alan (2012)
etc...

www.jgartus.net 17

Reasoning Through Complex Systems

* Top-down Approach
» Refers to the direction in which you approach a system
» Start from the goals of a system and proceed to the concept and then the high-level architecture

. :cl'hen develop the architecture in increasing detail until you reach the smallest entities of interest
0 you
* This method follows the “left-hand side” of the systems engineering VEE model

e Bottom-up Approach
 Think about the artifacts, capabilities, or services that are available in the lowest-level entities

» Build upward from them, predicting emergence

e Quter-In Approach
« Start at both top and bottom
 Work toward the middle

» Middle-Out
« Start at some arbitrary point in the system hierarchy
* Try to reason one or two levels up or down

e There is really no top or bottom to truly complex systems
* In reality we end up applying a middle-out approach

© Copyright 2022-2023 John G. Artus www.jgartus.net 18

Zig-Zagging

in the form domain and

es down through all levels of the

www.jgartus.net 19

References

ecture: Strategy and Product
boken, NJ

ysML, The Systems Modeling Language,

John Wiley & Sons, Inc., Hoboken New Jersey

www.jgartus.net 20

	Complex Systems
	About This Courseware
	Complexity
	Complexity (continued)
	Decomposition
	Decomposition (continued)
	Hierarchy
	Hierarchical Decomposition
	Hierarchical Decomposition (continued)
	Two Levels (Tiers) of Decomposition
	Hierarchical Decomposition (continued)
	Atomic Parts
	Special Logical Relationships
	Class/Instance Relationships
	Specialization Relationship
	Iteration
	Recursion
	Reasoning Through Complex Systems
	Zig-Zagging
	References

