
Use Case Modeling

John G. Artus
BSEE

MSSE

INCOSE ESEP

© Copyright 2023 John G. Artus 1www.jgartus.net

Lecture 12, v01

About This Courseware

• The majority of the material presented in this course is sourced from the
textbook “Use Case Modeling” by Kurt Bittner and Ian Spence

• I, John Artus, make no claim of ownership of the material sourced from this
textbook

• I, John Artus, am using the material sourced from this textbook, and other
indicated sources, as content for this courseware for educational purposes only

• This courseware lecture material has been sourced, interpreted, assembled,
formatted, and copyrighted by John G. Artus for use in this educational context

• Anyone may freely access, and reuse this material in an educational context
provided the copyright owner, John G. Artus, is recognized as the interpreter,
assembler, and formatter of the source material used in the generation of this
courseware, and provided that Kurt Bittner and Ian Spence are recognized as
authors of the textbook “Use Case Modeling” from which the majority of the
content of this courseware has been sourced

www.jgartus.net© Copyright 2022 John G. Artus 2

What is Use Case Modeling?

• Use case modeling is the development of models of a system, defined in terms of use cases, actors, and
the associations between them that describes the requirements of a system having to do with what a
user of the system (a kind of stakeholder) wants the system to do for them

• Use case modeling is typically done in the very early stages of a program when establishing what is the
problem that stakeholders want solved, specifically with regard to how stakeholders intend on using the
system to derive benefits from the system

• Use case modeling is accomplished primarily during the Stakeholder Needs and Requirements stage of
the SE life cycle

• Use case modeling provides an effective methodology for establishing stakeholder needs regarding use
of the system in order to facilitate the development of system requirements in this area

• The focus of information gathering for the purpose of developing system requirements regarding use of
the system is on
• What the user wants the system to do for them and

• How the user intends on interacting with the system

www.jgartus.net© Copyright 2023 John G. Artus 3

Stakeholder

Needs and

Requirements

System

Analysis

Architecture

Definition

Design

Definition
Implementation Integration TransitionVerification

Business or

Mission

Analysis

Validation Operation Maintenance Disposal

The 13 INCOSE Systems Engineering Technical Processes

Who does Use Case Modeling?
• This is actually a good question, is subject to modeling tool technology, and is likely to change over

time

• Who CURRENTLY performs use case modeling?
• Since requirements management tools (today, for the most part) DO NOT provide the means for use case modeling

• And since architecture modeling tools (today, for the most part) DO provide the means for use case modeling (using SysML)

• It is generally the job of the architect to perform use case modeling and create use case models

• Who SHOULD BE performing use case modeling?
• Since use case modeling is part of establishing stakeholder needs and stakeholder requirements,

• This SHOULD BE the job of requirements engineers

• Unfortunately, this landscape is driven for the most part by tool vendors
• However, the landscape is changing

• Architecture modeling tools are slowly become System modeling tools

• Having one system modeling tool serve the needs of both requirements engineers and architects will
have several benefits
• Both teams

• Use the same tool

• Access the same data

• Develop a single, unified model

• Which means that requirements engineers can focus on installing stakeholder/system requirements and use cases into the
system model

• While architect use that same data in the system model as inputs to the architecture development process
www.jgartus.net© Copyright 2023 John G. Artus 4

Use Case Modeling Terminology

• Use Case
• Describes a main usage of the System of Interest (SoI) by the user in order for the user to derive some benefit from the

SoI

• Use Case Model
• A model of a SoI, defined in terms of use cases, actors, and the associations between them

• Describes the requirements of the SoI having to do with what a user of the SoI (a kind of stakeholder) wants the SoI to
do for them

• Use Case Diagram
• A visual and graphic depiction of one or more actors and use cases and their relationships

• Use Case Description
• A textual description of the properties of a use case

• Primarily in the form of a sequential flow of events describing the interaction between the user and the SoI

• Actor
• Defines a role that a user can play while interacting with the SoI

• More than one actor can participate in a use case

• An actor can be a person or an external system (not part of the SoI)

• A single person can fulfill multiple actor roles, but each actor role is distinct in use case modeling

• User
• A person or external system that uses the SoI (an actor)

www.jgartus.net© Copyright 2023 John G. Artus 5

Example Use Case

• Use cases are expressed from the perspective:
• “As a user of the SoI, I want to use the system to (insert use case name here)”

• We will use a Snack Vending Machine (electro-mechanical type) as a simple representation of a SoI
• This is so we can focus on the discussion point without getting lost in the details of a more complicated system

www.jgartus.net© Copyright 2023 John G. Artus 6

Use Case

Name

Description Valid Use

Case?

Why or Why Not

Deposit Coins The user deposits coin(s)

into the coin slot to

initiate the interaction

No This is not the main purpose for

using the SoI

Select Snack

Item

The user selects the item

to be delivered by the SoI

No This is not the main purpose for

using the SoI

Extract Snack

From Bin

The user extracts the

delivered snack item from

the extraction bin

No This is not the main purpose for

using the SoI

Purchase

Snacks

The user purchases a

snack from the SoI

Yes This is a main objective of the user

Anything else is detail to be placed

into the use case description

Use cases are drawn graphically as ovals
Purchase

Snacks

“As a user of the SoI,

I want to use the system to purchase snacks”

Making Use of Use Case Models

• As Systems Engineers, we do not create models just for the sake of creating models
• Use case models are used to generate stakeholder requirements that are then transformed onto system

requirements

• The kinds of information gleaned from use case models includes (but is not limited to)
• Desired “features” to be made into system capabilities

• Defined sequences of interaction to be made into functional requirements describing observable system
behavior

• Defined system qualities and constraints to be made into non-functional requirements such as performance
requirements and quality requirements (“ilities”)

• Events that are expected to be raised by actors and by the system

• System responses to actor events

• The information exchanged between actors and the system

• While use case models are valuable tools for eliciting stakeholder needs and
requirements, they cannot and do not capture ALL requirements
• However, they are capable of capturing the bulk of the behavior-related requirements at the user level

• Use case models are very useful for visualizing how the users (including external systems)
and the SoI will interact
• They can be used in reviews with the customer to ensure a joint understanding of the intended system behavior

with users before design activities move forward
www.jgartus.net© Copyright 2023 John G. Artus 7

Use Case Descriptions

www.jgartus.net© Copyright 2023 John G. Artus 8

Use Case Description

• A text-based description of the use case properties and sequential flow of events in the

interaction between a user and the SoI while performing a use case

• For every use case, there must be an accompanying use case description

• The basic contents of a use case description are:

www.jgartus.net© Copyright 2023 John G. Artus 9

• Use Case Name – A short title for the use case

• Use Case ID – A tracking number

• Use Case Brief Description – A paragraph long summary
of the use case

• Primary Actor – The actor principally involved in this
use case

• Secondary Actor(s) – Any other actors involved in this
use case

• Preconditions - A statement of the (optional)
condition(s) that must exist in order for the use case
to be performed when triggered

• Trigger – An event that causes the use case to be
started (Providing preconditions are met)

• Basic Flow - Sequential steps involved in the primary
actor interaction with the SoI

• Alternate Flows – Optional flow paths off of the basic
flow path that the use case could take, based on
events that occur

• Exception Flows - Optional flow paths off of the basic
flow path that the use case could take, based on
faults that occur

• Postconditions - A statement of the (optional)
condition(s) that must exist when the use case ends in
order for the use case to be considered to have
completed successfully

• Frequency of Use – A specification or estimation as to
how often it is expected the use case to be triggered
during system use

Use Case Model Development Approach

1. Understand the stakeholder’s problem

2. Define the boundary of the system
a) Anything inside the system boundary is the responsibility of the

developer

b) Anything outside the system boundary is not the responsibility of the
developer

c) Interfaces that cross the system boundary require the developer to
participate in the definition of the interface with the actor/system on
the other end of the interface

3. Identify all the actors that will have direct contact with (use of)
the system

4. Identify what are the principle uses of the system that the actors
are interested in (the use cases)

5. For each use case, develop a complete use case description
(FIRST)
a) The use case description will describe the sequential flow of

interaction between the actor(s) involved in the use case and the SoI

b) There can be alternative flows, depending on options the user can
select, or based on exceptions to the normal flow

i. These will be discussed later in this lecture material

c) The use case description for real systems can be quite long and
elaborate – this is the real work of developing a use case model

6. (THEN, and only then) Develop a use case diagram, based on the
use case description

www.jgartus.net© Copyright 2023 John G. Artus 10

A very simple use case description example

http://match.inf.ufsc.br:90/upcase/examples.html

http://match.inf.ufsc.br:90/upcase/examples.html

Example Use Case Description

• There is no standard format for use case descriptions

• There are many use case description templates and examples available on the internet

www.jgartus.net© Copyright 2023 John G. Artus 11

https://kelvin.ink/2018/10/08/OOAnalysisUML1/https://www.researchgate.net/publication/220536177_Empirical_Evaluation_and_Review_of_

a_Metrics-Based_Approach_for_Use_Case_Verification

https://kelvin.ink/2018/10/08/OOAnalysisUML1/
https://www.researchgate.net/publication/220536177_Empirical_Evaluation_and_Review_of_a_Metrics-Based_Approach_for_Use_Case_Verification
https://www.researchgate.net/publication/220536177_Empirical_Evaluation_and_Review_of_a_Metrics-Based_Approach_for_Use_Case_Verification

Use Case Description “Flows”

• The sequential steps of an interaction between an actor and the SoI constitute a
“flow”

• These flows are described in the use case description text

• Flows are categorized as
• Basic flow – covers what “normally” happens during the successful implementation of a use case

• Subflows – a decomposition of the basic flow for the purpose of making it easier to follow the basic flow

• Subflows are NOT child use cases

• They are simply a mechanism to break up a long use case basic flow description into more digestible parts for the
reader to be able to understand the flow more easily

• Subflows should be “atomic” – either all or none of the actions described in the subflow are performed

• Unless absolutely necessary, avoid constructing several levels of sub-subflows

• Alternative flows – covers behavior that is optional, exceptional, or an alternative to the basic flow

• The implementation of an alternative flow is the result of some condition or event triggering the alternative flow

• Under such conditions, the use of alternative flows is preferred to creating subflows because alternative flows
represent a defined, meaningful subset of functionality that helps manage scope of the system functionality

• This way, alternative flows can be easily created, modified, or eliminated without affecting the basic flow or other
alternative flows

• You cannot create, modify, or eliminate subflows without directly affecting the nature of the basic flow

www.jgartus.net© Copyright 2023 John G. Artus 12

Example Basic Flow

The example uses an extraction of (not all of) a use case titled “Browse Products
and Place Orders” for an online shopping app

www.jgartus.net© Copyright 2023 John G. Artus 13

Basic Flow

1. The use case starts when the actor Customer selects to browse the catalog of product offerings.

2. The System displays the product offerings highlighting the product categories associated with the Customer’s profile.

3. The Customer selects a product to be purchased, entering the number of items required.

4. For each selected item that is in stock, the System records the product identifier and the number of items required,

reserving them in inventory and adding them to the Customer’s shopping cart.

5. Steps 3 and 4 are repeated until the Customer selects to order the products.

6. The System prompts the Customer to enter payment instructions.

7. The Customer enters the payment instructions.

8. The System captures the payment instructions using a secure protocol.

... (remainder of flow not shown for brevity)

There are many different proposed methods for

documenting use case flows

This is one method suggested by the book “Use

Case Modeling” by K. Bittner and I. Spence

Example Subflow

• This modification to the example includes one subflow – which directs the basic flow to branch off and

perform the subflow before returning back to the basic flow

• Subflows can be useful when the same behavior appears more than once in a single use case

www.jgartus.net© Copyright 2023 John G. Artus 14

Basic Flow

1. The use case starts when the actor Customer selects to browse the catalog of

product offerings.

2. The System displays the product offerings highlighting the product categories

associated with the Customer’s profile.

3. The Customer selects a product to be purchased, entering the number of

items required.

4. For each selected item that is in stock, the System records the product

identifier and the number of items required, reserving them in inventory and

adding them to the Customer’s shopping cart.

5. Steps 3 and 4 are repeated until the Customer selects to order the products.

6. The System prompts the Customer to enter payment instructions.

7. The Customer enters the payment instructions.

8. The System captures the payment instructions using a secure protocol.

9. Perform Subflow S1: Validate Payment Instructions.

... (remainder of flow not shown for brevity)

SUBFLOW

Subflow Validate Payment Instructions

1. The System contacts the Paying Institution for validation of Customer payment

information.

2. The System transmits the Customer payment information to the paying institution.

3. The Paying Institution returns a validation code that indicates whether the

Customer's payment information is valid or not.

4. The System informs the Customer whether the payment information has been

validated or not.

... (remainder of flow not shown for brevity)
There are many different proposed methods for

documenting use case flows

This is one method suggested by the book “Use

Case Modeling” by K. Bittner and I. Spence

It is important to understand that the Basic

Flow and the Subflow shown in this example

would be part of the same use case

Extension Points

• The example uses “extension points” which are simply named places within the flow to indicate where additional behavior

can be inserted or attached

• Extension points can be used within the description of alternative flows to indicate where the alternative flow are inserted

into the basic flow

www.jgartus.net© Copyright 2023 John G. Artus 15

Basic Flow

1. The use case starts when the actor Customer selects to browse the catalog of product offerings.

{Display Product Catalog}

2. The System displays the product offerings highlighting the product categories associated with the Customer’s profile.

{Select Products}

3. The Customer selects a product to be purchased, entering the number of items required.

4. For each selected item that is in stock, the System records the product identifier and the number of items required, reserving them in inventory and adding them to the Customer’s shopping cart.

{Out of Stock}

5. Steps 3 and 4 are repeated until the Customer selects to order the products.

{Process the Order}

6. The System prompts the Customer to enter payment instructions.

7. The Customer enters the payment instructions.

8. The System captures the payment instructions using a secure protocol.

9. Perform Subflow S1: Validate Payment Instructions.

... (remainder of flow not shown for brevity)

EXTENSION POINT

EXTENSION POINT

EXTENSION POINT

EXTENSION POINT

There are many different proposed methods for

documenting use case flows

This is one method suggested by the book “Use

Case Modeling” by K. Bittner and I. Spence

Three of these extension points are used simply

as topic headings

• {Display Product Catalog}

• {Select Products}

• {Process the Order}

One of these extension points is used to reflect

the state of the use case

• {Out of Stock}

Handling a Specific Alternative Flow

• It is worth repeating that the reason for breaking out alternative flows

specifically is so that we can manage the scope of the system
• We want to be able to remove subsets of functionality (the alternative flows) without breaking the system

and/or failing to provide the expected level of value to the stakeholders

• If we consider system behavior only at the level of single, monolithic use cases, we will not be able

provide use case scope management since use cases will tend to be large and relatively indivisible

• Alternative flows generally represent optional behavior that is outside of the normally expected system

behavior, and therefore can be easily added, modified, or removed without impact to the basic flow

www.jgartus.net© Copyright 2023 John G. Artus 16

Alternative Flow: A3 Handle Product Out of Stock

At {Out of Stock} if there are insufficient amounts of the product in the inventory to fulfill the Customer’s

request, then,

The System informs the Customer that the order cannot be fulfilled.

 ... the flow continues to describe the offering of alternative amounts and products to the Customer ...

The flow of events returns to the basic flow and is resumed from the point at which it was interrupted.

There are many different proposed methods for

documenting use case flows

This is one method suggested by the book “Use

Case Modeling” by K. Bittner and I. Spence

It is important to understand

that the Basic Flow and the

Alternative Flow shown in

this example would be part

of the same use case

Transforming an Alternate Flow into an Extended Use Case

• The original intent of use case extension was to specify options that could be

added with minimal effect on the existing product

• So, the «extend» relationship should be thought of as adding behavior contained in the extended

use case to an existing use case

• The extended use case must be able to stand alone (be independent of the base use case)

• This means that the base use case requires no changes in order to use the extended behavior of

the extended use case

www.jgartus.net© Copyright 2023 John G. Artus 17

Original

(extended)

Use Case

Options

(extending)

Use Case

«extend»

• Certain situations can take advantage of extended use cases
• To describe behavioral features that are optional to the basic behavior of the system

• To describe complex error- or exception-handling behavior that would otherwise complicate understanding of the basic behavior of the system

• To describe special handling situations of a particular customer that uses the system in a unique way

• To control releases of new system behavior that will not be introduced until a later release

• Conceptually, an extending use case works the same way as an alternative flow
• An extending use case explicitly inserts itself into the flows of the use case it is extending, just like an alternative flow

• An extending use case knows exactly where in the base use case the behavior is to be inserted

• For this reason, an extending use case often begins life as an alternative flow

• While it is possible to transform an alternate flow into an extended use case, there are several considerations that the use
case developer should contemplate
• Because alternative flows are actually part of a use case, they can exploit their knowledge of the use case’s state, preconditions, and other flow

events to end the use case or resume the flow of the use case at the extension points other than the one from which they assumed control

• As opposed to alternative flows which are aware of the state of the base flow, extending use cases are not aware of the state of the base use case

• All extending use cases know about is the extension point at which they insert themselves into the flow of events of the use case that they extend

www.jgartus.net© Copyright 2023 John G. Artus 18

Example of use of Extending Use Cases

Use Case: Notify of Overdraft

Extension

Extends use case Process Transactions at

{Summarize Transactions} if the customer has

purchased the overdraft notification service and

the set of completed transactions has caused the

account to become overdrawn.

Basic Flow

1. The System determines the customer’s

preferred notification mechanism, as recorded in

the customer profile.

2. The System composes the overdraft

notification, providing the transaction

information, the date and time the transaction

was processed, the account information, the

balance prior to the transaction, the balance

subsequent to the transaction, and the amount

of the overdraft fee, if any.

3. The System transmits the overdraft notification

message to the customer using the customer’s

preferred notification mechanism.

4. The use case ends.

Extending Use Case

Use Case: Process Transactions

Basic Flow

1. The use case starts when the actor Cashier initiates transaction processing for a set of unprocessed

transactions.

2. The System orders all the transactions so that all transactions for a particular account are grouped together,

and within this grouping the deposit transactions are processed first to avoid unnecessary overdraft processing.

3. For each account:

{Determine Customer Account}

a. The System determines the customer account to which the transaction is applied.

b. For each transaction:

 {Apply Transaction}

 ... (part of this flow not shown for brevity)

 {Record Transaction}

 ... (part of this flow not shown for brevity)

 {Summarize Transaction}

 i. When all transactions for a particular account have been processed, the System creates a

transaction summary for the account.

4. When all transactions have been processed, the use case ends.

Extended Use Case
There are many different proposed methods for

documenting use case flows

This is one method suggested by the book “Use

Case Modeling” by K. Bittner and I. Spence

It is important to understand that the flow associated with

the Extending use case is that of a separate use case

Use Case: Answer Customer Inquiries

1. The use case starts when the actor Customer calls the Customer Service Center Support number.

...

8. The System determines whether the Customer’s personal information is already on file.

9. If it is, then the Customer uses the customer identification number to determine whether there have been any prior calls placed by this

Customer; if prior calls have been made, the System records references to the prior call information in the Customer Service Request.

10. If it is not, then «include» use case Add Customer Information so the Customer Service Representative can record information for this

customer.

...

Including Use Case

Sharing Common Behavior among Multiple Use Cases
• When common behavior is shared among multiple use cases, the common behavior can be culled out to form a separate use case

• The example uses the «include» relationship between two use cases that share common behavior

• It is important to ensure that the common behavior can be culled out completely and that the new included use case is totally
independent of the use cases it is included into

• Included use cases are different from Subflows because Subflows are completely “aware” of the state of the base flow, whereas
included use cases are clueless as to the state of the use case they are included into

www.jgartus.net© Copyright 2023 John G. Artus 19

Use Case: Order Products

1. The use case starts when the actor Sales Representative selects the menu option to place an order.

2. The System asks the Sales Representative to enter the Customer’s customer identification number.

3. If the Customer is a new customer, «include» use case Add Customer Information so the Sales Representative can record information

for this Customer.

...

Including Use Case

Use Case: Add Customer Information

1. The System prompts the User to enter the customer

information.

2. When adding or modifying the customer information:

a. When the state or province is entered or changed,

the System checks to see if the state or province is

valid for the country entered.

b. When the postal code is entered or changed, the

System checks to see if it is valid for the country and

state or province indicated.

3. The use case ends when the additions or changes to the

customer information are saved, or the additions or changes

are aborted.

Included Use Case

It is important to understand that the flow associated with

the Included use case is that of a separate use case

There are many different proposed methods for

documenting use case flows

This is one method suggested by the book “Use

Case Modeling” by K. Bittner and I. Spence

Here, “User” is used to

serve as a surrogate for

“Customer” and Sales

Representative” in the

including use cases

Use Case Diagrams

www.jgartus.net© Copyright 2023 John G. Artus 20

Use Case Diagram

• In Systems Engineering, we use the UML/SysML standard Use Case Diagram for representing use cases
• A basic use case diagram depicts the following

• System Boundary – a box that indicates the boundary separating the system contents from the external environment

• Use case(s) – one or more ovals indicating the uses cases involved

• Actors – user roles or external systems that interact with the SoI

• Associations – lines between actors and use cases indicating the relationship between the two

• Beyond these basics there a several additional features of a use case diagram, which will be covered further on in this lecture

• Generally, there could be several actors and several use cases

www.jgartus.net© Copyright 2023 John G. Artus 21

Purchase

Snacks

Snack Vending Machine

Customer

Maintainer

Purchase

Snacks

Snack Vending Machine

Refill

Snacks

Repair

Machine

Collect

Funds From

Purchases
Owner

Customer

Actor Initiates

Interaction

with Use Case

Use Case Initiates

Interaction with

Actor

Syntax for Association Lines

A use case diagram is created from the user story presented in the use case description

To Decompose or Not To Decompose

• There exists a debate among engineers whether it is
appropriate to “decompose” use cases into lower-level use
cases as you would decompose top-level system functions
into lower-level sub-functions

• The consensus opinion among professional systems engineers
is that it is NOT appropriate to decompose use cases
• The thinking goes along these lines:

• Decomposition can continue ad-nauseum

• This is common and desirable in functional decomposition

• But use cases ARE NOT the same as system functions

• Use cases should only be broken down into child use cases as long as

• The child use case is still within the vision of the user involved in the base use
case

• The child use case can be cleanly carved out of the base use case that

• Either the child use case can be a child of multiple base use cases «include»

• Or the child use case hands an exception in the normal flow of the base use case
«extend»

• Once the user is no longer involved in the interactions at these lower
levels, creating lower level child use cases serves no further purpose

www.jgartus.net© Copyright 2023 John G. Artus 22

Example of unnecessary use case decomposition

It is unlikely that a user will want to use the system

simply to “input coin”

This is an example of a use case model that is crossing

over into detailed system design work

It defeats the purpose of coordinating with the user

over “what the user wants the system to do for them”

Representing Included Use Cases in Diagrams

• This example use case diagram demonstrates the use of the «include» relationship among use cases

• This example follows the use case description presented in this slide

• This example is not a complete description of an Order Fulfillment System, just the parts of the system addressing
the interaction discussed in the associated use case description

www.jgartus.net© Copyright 2023 John G. Artus 23

Sales

Representative

Order

Products

Order Fulfillment System

Answer

Customer

Inquiries

Add

Customer

Information

Customer

Service

Representative

Customer

«include»

Use Case Diagram for Part of Order Fulfillment System

Included

use case
Including

use cases

Representing Extending Use Cases in Diagrams

• This example use case diagram demonstrates the use of the «extend» relationship among use cases

• This example follows the use case description presented in this slide

• This example is not a complete description of an Order Fulfillment System, just the parts of the system addressing
the interaction discussed in the associated use case description

www.jgartus.net© Copyright 2023 John G. Artus 24

Order Fulfillment System

Process

Transaction

Notify of

Overdraft

Cashier

Customer

Use Case Diagram for Part of Order Fulfillment System

Extending

use case
Extended

use case

Extension Points

www.jgartus.net© Copyright 2023 John G. Artus 25

Extension Points

• Extension points can be illustrated in use case diagrams
• Not all extension points need be declared in a use case diagram

• Only those that are considered “public” (accessed by use cases, not only by alternative flows) should be listed

• However, it should be noted that this is simply a method of documenting that these extension
points exist
• They are in no way directly tied to the extension points listed in the use case documentation

• In fact, like much of SysML, use cases are not executable

• So, the only purpose for identifying extension points in a use case diagram is simply to inform the reader of the
diagram that these extension points exist (somewhere)

www.jgartus.net© Copyright 2023 John G. Artus 26

Order Fulfillment System

Browse Products and Place Orders

Extension Points
Display Product Catalog

Out of Stock

Process the Order

Order Processed
Customer

Use Case Diagram for Part of Order Fulfillment System

Generalization Relationships

www.jgartus.net© Copyright 2023 John G. Artus 27

Generalization Relationship among Use Cases

• The generalization relationship allows the creation of generalized behavior
descriptions that can then be specialized to meet particular needs
• The need for this kind of relationship arises from the need to describe families of systems in

which child use cases inherit behavior from parent use case

• In a sense, specialization has the mechanics of an include – because the specialized use case
reuses the generalized behavior from the generalized use case

• But it has the semantics of an extend – since it is the specialized use case that provides the
additional behavior

• Example: the steps taken to use a bank card for ATM services are very similar to
those taken to fuel a vehicle at a gas pump
• The procedure to use is to establish an abstract use case that captures the common elements of the ATM

service and the Fueling service that could apply to either service without specifically mentioning the
details of the specific type of service

• Then create two concrete use cases, one for each specific type of service, in which the particular details
of each of the different types of service are specified

www.jgartus.net© Copyright 2023 John G. Artus 28

Conduct Transaction

Basic Flow

1. The Customer inserts a bank card into the dispenser machine.

2. The System reads the customer account information from the bank card.

3. The System requests the Customer to enter the PIN.

4. The Customer enters the PIN.

5. The System verifies that the PIN entered is correct by comparing it to the PIN that was read from

the bank card.

6. The System contacts the Banking System to verify that the customer account information is valid

7. The System asks the Customer for the amount of the transaction.

8. The Customer enters the transaction amount.

9. The System contacts the Banking System to verify that the customer has sufficient funds to cover

the transaction.

{Customer Conducts the Transaction}

10. The System records the actual amount of the transaction.

11. The System communicates to the Banking System that the transaction has been completed,

indicating the actual amount of the transaction.

12. The System logs the transaction, capturing the date and time of the transaction, the amount of

the transaction, and the account from which the funds were withdrawn.

13. The use case ends.

Abstract Use Case

www.jgartus.net© Copyright 2023 John G. Artus 29

Abstract and Concrete Use Cases

Withdraw Cash

Basic Flow

At {Customer Conducts the Transaction}

1. The System checks to see if it has sufficient funds on hand to dispense the

requested amount.

2. The System dispenses the requested amount of cash.

3. The System asks the Customer to take the cash.

4. The Customer takes the cash.

5. The behavior described in use case Conduct Transaction resumes.

Concrete Use Case

Fuel Vehicle (concrete use case)

Basic Flow

At {Customer Conducts the Transaction}

1. The System asks the Customer to lift the pump handle and begin dispensing

fuel.

2. The Customer dispenses fuel up to the value entered, or until the tank is full.

3. The Customer replaces the pump handle.

5. The behavior described in use case Conduct Transaction resumes.

It is important to understand that the flow associated with the concrete use cases is that of separate use cases

There are many different

proposed methods for

documenting use case flows

This is one method suggested by

the book “Use Case Modeling” by

K. Bittner and I. Spence

Concrete Use Case

Use Case Generalization on Use Case Diagrams

• It is the behavior of the specialized use cases (concrete use cases) that is performed, depending on
the type of engagement being experienced

• The specialized use cases are actually reusing parts of the generalized use case when their behavior is invoked

www.jgartus.net© Copyright 2023 John G. Artus 30

Bank Card Transaction Processing System

Conduct

Transaction

Customer

Use Case Diagram for Part of Bank Card Transaction Processing System

Customer

Withdraw

Cash

Fuel

Vehicle

Specialized

(concrete)

use cases

Generalized

(abstract)

use case

Generalization Relationship among Actors

•The generalization relationship among actors is used to show similarity
between actors
• It shows that some group of actors share common responsibilities or common characteristics

• Useful characteristics to attach to actors include:

• Their expertise

• Things they need from the SoI

• Usability and response requirements the actors impose on the system

• Sometimes, actor generalization can be used to reduce the number of communication relationships

• But generally, actor generalization is of little value to use case modeling

•Misuse of actor generalization include:
• Confusing system actors with user organizational roles and job titles

• This is in appropriate because actors only define roles with respect to the SoI, nothing more

www.jgartus.net© Copyright 2023 John G. Artus 31

Actor Generalization on Use Case Diagrams

• There is no need for any other type of relationship between actors since they do not communicate
with one another
• Any such communications do not involve the system, and therefore do not belong on the use case diagram

www.jgartus.net© Copyright 2023 John G. Artus 32

Some System

Sales

Representative

Field Sales

Representative

Telesales

Representative

Some

Use Case

Some Other

Use Case

Specialized

actors

Generalized

actor

Scenarios and Sequence Diagrams

www.jgartus.net© Copyright 2023 John G. Artus 33

Scenarios

• Scenarios (within the context of use cases) are instances, or specific occurrences, of use cases

• Scenarios are useful in that they force the use case designer to think within a certain context of
use of the system
• They help the use case designer walk through everything that will happen during the user interchange with the system

• They can be useful later on in defining the test cases that will be used to verify system behavior and performance

• A single scenario will walk through one particular path of the use case from beginning to end
• That single scenario will explore a particular way that the use case can be performed

• Other scenarios can investigate other paths taken within the use case based on alternative flows, etc.

• It is especially important to consider boundary conditions – the points at which a small change in
the value of some variable causes some very different behavior in the system as a whole
• Consider things such as “what if ...?” situations

• These may expose errors or gaps in the use case flow

• It is important to be realistic about how many scenarios can be covered on a limited budget
• Stick with the basic flow, and alternative flows

• Do not consider every single possible event that can occur in the system – there will be too many to consider

• If alternative flows are truly independent, then they won’t affect each other and each flow can be an individual
scenario

• Further, truly independent alternative flows can often be combined into a single scenario, thus reducing effort

www.jgartus.net© Copyright 2023 John G. Artus 34

Sequence Diagrams

• Sequence diagrams are a great mechanism for documenting scenarios

• Sequence diagrams are one of the three SysML diagrams that document detailed
system behavior
• The other two are Activity diagram and State Machine diagram

• Sequence diagrams are excellent at documenting detailed system behavior, but they also have a role in
documenting use case scenarios

• Sequence diagrams are well suited for documenting scenarios as the primary
objective of a sequence diagram is
• To document the sequential nature of actor-to-actor (to-system) interactions

• The sequence diagram offers a great amount of facility for defining very detailed
and elaborate descriptions of system behavior
• Usually, for describing use case scenarios, only the most basic features of sequence diagramming

capability are required

• It is recommended that a use case designer considering the use of sequence diagrams for documenting
scenarios refer to other resources for additional information on the full set of capabilities of sequence
diagrams

• Only the most basic features of sequence diagrams are covered here

www.jgartus.net© Copyright 2023 John G. Artus 35

Main Sequence Diagram Features

• The main features of a sequence diagram include
• Diagram frame – representing the use case being examined

• Lifeline – the relative lifetime of an actor

• Occurrence of an event – for simplicity, these are the interactions between the actor(s) and the system, and are

represented as exchanged messages

• Execution - optional indication on a lifeline of the receiver of a message indicating execution of some behavior for an

amount of time on the lifeline

• Combined fragments – simply put: fragments of interaction controlled by guard statements that determine whether the

conditions exist for the fragment of interaction to execute

• Opt – the guard statement is a single condition statement

• Alt/Else – evaluation of the guard statement resolves to one of several options

• Par – provides two or more parallel fragments that can execute simultaneously

• Loop – the guard statement provides the condition for exiting a processing loop

• Message types
• Synchronous – the sender of the message waits for a rely from the receiver before proceeding with further interaction

• Reply – the receiver of a synchronous message sends a reply that is specifically associated with the received message

• Asynchronous – the sender of the message does not wait for a rely and continues normally with further interaction

• Message-to-Self – Indicates that the actor (or system) on the lifeline is executing some kind of behavior

www.jgartus.net© Copyright 2023 John G. Artus 36

Sequence Diagram Syntax

• This is a simple example of a sequence diagram for a use case scenario indicating the main features

www.jgartus.net© Copyright 2023 John G. Artus 37

sd [interaction] Use Case Withdraw Cash Basic Flow

Customer System Bank

Welcome Message

Bank Card Inserted

PIN Prompt

PIN

Validate PIN

Withdrawal Amount Prompt

Withdrawal Amount

Valid PIN

Check for Sufficient Cash

Sufficient Funds Request

Sufficient Funds Reply

Sufficient Cash

Sufficient Funds Fund Transfer

Eject Bank Card

Dispense Cash
Close Transaction

Close Transaction

Asynchronous Message

Synchronous Message

Reply Message

Message-to-Self

LEGEND

Not all details of the scenario are

represented in this simple model

References

• Bittner, K., Spence, I. (2003), Use Case Modeling, Addison-Wesley Publishers

• Liberti, L. (2008), Software Modelling and Architecture: Exercises, LIX, The Computer Science Laboratory of Ecole
Polytechnique,
• https://www.researchgate.net/publication/251224162_Software_Modelling_and_Architecture_Exercises

© Copyright 2023 John G. Artus 38www.jgartus.net

https://www.researchgate.net/publication/251224162_Software_Modelling_and_Architecture_Exercises

	Slide 1: Use Case Modeling
	Slide 2: About This Courseware
	Slide 3: What is Use Case Modeling?
	Slide 4: Who does Use Case Modeling?
	Slide 5: Use Case Modeling Terminology
	Slide 6: Example Use Case
	Slide 7: Making Use of Use Case Models
	Slide 8: Use Case Descriptions
	Slide 9: Use Case Description
	Slide 10: Use Case Model Development Approach
	Slide 11: Example Use Case Description
	Slide 12: Use Case Description “Flows”
	Slide 13: Example Basic Flow
	Slide 14: Example Subflow
	Slide 15: Extension Points
	Slide 16: Handling a Specific Alternative Flow
	Slide 17: Transforming an Alternate Flow into an Extended Use Case
	Slide 18: Example of use of Extending Use Cases
	Slide 19: Sharing Common Behavior among Multiple Use Cases
	Slide 20: Use Case Diagrams
	Slide 21: Use Case Diagram
	Slide 22: To Decompose or Not To Decompose
	Slide 23: Representing Included Use Cases in Diagrams
	Slide 24: Representing Extending Use Cases in Diagrams
	Slide 25: Extension Points
	Slide 26: Extension Points
	Slide 27: Generalization Relationships
	Slide 28: Generalization Relationship among Use Cases
	Slide 29: Abstract and Concrete Use Cases
	Slide 30: Use Case Generalization on Use Case Diagrams
	Slide 31: Generalization Relationship among Actors
	Slide 32: Actor Generalization on Use Case Diagrams
	Slide 33: Scenarios and Sequence Diagrams
	Slide 34: Scenarios
	Slide 35: Sequence Diagrams
	Slide 36: Main Sequence Diagram Features
	Slide 37: Sequence Diagram Syntax
	Slide 38: References

