
1

Petri Net Patterns
John G. Artus

BSEE

MSSE

INCOSE ESEP

www.jgartus.net© Copyright 2021 John G. Artus

Lecture 71, v01

Mutual Exclusion

www.jgartus.net© Copyright 2021 John G. Artus 2

Process Stages

• Often, when representing a system process, we
show the process having three stages of operation

• Local
• The system is performing some internal actions in

preparation for performing the critical action

• Waiting
• The internal actions have completed, and the system is

now waiting in a queue to perform the critical action

• Critical
• The system is performing the critical action

• When this action is complete, the token is passed to
“local” indicating that another process can begin

www.jgartus.net© Copyright 2021 John G. Artus 3

local

critical

waiting

It is not uncommon to have system processes that can

perform multiple operations (jobs) simultaneously

This would be represented by having multiple tokens,

each one indicating a separate operation

Thus, multiple critical actions can be performed at

the same time

Coordinating Multiple Processes

• A common way of coordinating multiple processes is to use a control key that is
shared between the processes such that only one process can operate at a time
• This assumes that both processes access critical resources that cannot be shared

• And therefore the need to have only one process operate at a time

• One way to handle this is to use the control key to alternate between two
processes

www.jgartus.net© Copyright 2021 John G. Artus 4

Key to Enable

Process B

Process A Process B

local

critical

waiting

critical

waiting

local

However, in this

arrangement, if one

process is stuck in the

local stage performing

some internal operation,

then it can dominate the

entire mechanism and

prevent the other

process from performing

its critical operation

This occurs because the

key is dedicated to that

process and is waiting for

the job to move to the

waiting stage

A better solution is to use mutual exclusion

Mutual Exclusion

• Mutual exclusion occurs when two processes are coordinated by a central controller
such that only one process operates at a time

• In this example, two processes are operating concurrently
• Each has a token that is ready to be supplied to the process

• But the first transition needs the control “key” token as well in order to fire

• The central controller can only issue the key to Process A or Process B, not to both

• So, effectively, only one process can operate at a time

• When the process completes, the key is returned to the central controller
www.jgartus.net© Copyright 2021 John G. Artus 5

P₁

T₁

P₂

P₃

P₄

T₂

T₃

T₄

P5

Process A Process B

Place P5 (the central controller) is a

“non-deterministic” node

Meaning that when simulated, it will

issue its token randomly

The critical state for Process A is P2

The critical state for Process B is P4

Coordinating Processes with Mutual Exclusion

• Mutual exclusion is a common way of coordinating two or more processes
• As in the alternating control of processes, only one process operates at a time

• However, if one process is stuck performing some local action, the other process can obtain
the key to keep working

• This occurs because the key is available to both processes

• The key will go to the process that first has a job that reaches the waiting stage

www.jgartus.net© Copyright 2021 John G. Artus 6

key

Process A Process B

local

critical

waiting

critical

local

waiting

Avoiding Crosstalk

www.jgartus.net© Copyright 2021 John G. Artus 7

Two Systems in One-Way Communication
• In communication, two systems can coordinate with each other using a message / acknowledge

scheme

• This allows one system (System A) to send messages to (System B) with high assurance that System
B will receive the message

• This is because System A waits for an acknowledgement received from System B before sending the next
message

• This avoids sending messages while the receiving system is not prepared to accept the new incoming message

• The acknowledgement is an indication that System B is ready to receive the next message

www.jgartus.net© Copyright 2021 John G. Artus 8

The scheme depicted

here works because the

two transmissions flow

at separate times, even

if on the same

transmission channel

But the shceme only

works for one-way

transmission of messages

System A System B

Idle Idle

SendMsg SendAck

MsgSent

Waiting AckSent

MsgRcvdFinish Finish

Two Systems in Two-Way Communication

• One might think that doubling this
arrangement might allow two-way
communications

• Crosstalk occurs when the two systems
both send messages at the same time,
while also waiting for acknowledgement
from the other system

www.jgartus.net© Copyright 2021 John G. Artus 9

Since both systems start by sending their

first message simultaneously, there is no

token in the Idle state to use to trigger

and acknowledgement

The two systems become “deadlocked”

In addition, two communication channels

would be required to allow both systems

to transmit at the same time

System A System B

Idle_A Idle_B

SendMsg_A SendAck_B

MsgSent_A

Waiting_A AckSent_B

MsgRcvd_B
Finish_A Return_B

SendMsg_BSendAck_A
MsgSent_B

Waiting_BAckSent_A

MsgRcvd_A
Finish_BReturn_A

Attempt at Correcting Crosstalk

• One attempt to overcome the crosstalk
issue is to catch a situation in which
one System is waiting for an ack, while
it also is receiving a new message from
the other system

• This is crosstalk

• A special transition (Crosstalk) is added
to terminate the waiting for the ack
from the first received message

www.jgartus.net© Copyright 2021 John G. Artus 10

System A System B

Idle_A Idle_B

SendMsg_A SendAck_B

MsgSent_A

Waiting_A AckSent_B

MsgRcvd_B
Finish_A Return_B

SendMsg_BSendAck_A

MsgSent_B

Waiting_BAckSent_A

MsgRcvd_A
Finish_BReturn_A

Crosstalk_A

Crosstalk_B

Crosstalk Correction in Action

• Here, a simulation run in SNOOPY shows
the crosstalk detection scheme working

• Both systems have sent a message

• And both systems are waiting for
acknowledgement of their messages
having been received

• The crosstalk detection mechanism is
ready to fire to terminate waiting for
the acknowledgement, and to then go
ahead and process the new incoming
message and send out an
acknowledgement

• This is a case of the crosstalk
mechanism working correctly

www.jgartus.net© Copyright 2021 John G. Artus 11

Crosstalk Detection Failure

• However, on occasion, the mechanism declares
crosstalk when the situation does not actually
exist

• Here, in a simulation run on SNOOPY, System B
is waiting on acknowledgement of a message it
previously sent to System A

• While System B waits, System A sends a new
message
• This is not a case of crosstalk because both

messages are not being sent simultaneously

• Nevertheless, System B is now set to declare a
crosstalk (falsely)

www.jgartus.net© Copyright 2021 John G. Artus 12

This is a relatively rare occurrence

In this particular case, it took over 100 firings

in SNOOPY to encounter this situation

Crosstalk Detection Fixed

• In this amendment to the network, the
problem of false detection of crasstalk is
corrected

• Here, a token in AckSent cannot return to
Idle until an additional token is provided
either by
• System A finishing it’s complete message

sending operation after receiving an
acknowledgement from System B, or

• System A recognizing a valid crosstalk situation

• Eitherway, System B will bot be able to
initiate a new message (from Idle) until
System A completely finishes its processing
of the last message sent by System B

www.jgartus.net© Copyright 2021 John G. Artus 13

System A System B

Idle_A Idle_B

SendMsg_A SendAck_B

MsgSent_A

Waiting_A AckSent_B

MsgRcvd_B

Finish_A Return_B

SendMsg_BSendAck_A

MsgSent_B

Waiting_BAckSent_A

MsgRcvd_A

Finish_BReturn_A

Crosstalk_A

Crosstalk_B

Finished_A

Crosstalk Detection Fixed (continued)

• Here is a repeat of the previous scenario
in which System B is waiting for an
acknowledgement from System B

• System A will NOT be able to return to Idle
and send another message UNTIL System A
completes its processing of the previous
message from System B

www.jgartus.net© Copyright 2021 John G. Artus 14

This is a complete solution that

correctly captures real crosstalk

situations and does not capture

false croostalk situations

References

1. Reisig, W.(1982). Petri Nets – An Introduction. Springer-Verlag, Berlin, Heidelberg, New York

2. Reisig, W. (2013) Understanding Petri Nets – Modeling Techniques, Analysis Methods, Case Studies. Springer-Verlag, Berlin, Heidelberg

www.jgartus.net© Copyright 2021 John G. Artus 15

	Slide 1: Petri Net Patterns
	Slide 2: Mutual Exclusion
	Slide 3: Process Stages
	Slide 4: Coordinating Multiple Processes
	Slide 5: Mutual Exclusion
	Slide 6: Coordinating Processes with Mutual Exclusion
	Slide 7: Avoiding Crosstalk
	Slide 8: Two Systems in One-Way Communication
	Slide 9: Two Systems in Two-Way Communication
	Slide 10: Attempt at Correcting Crosstalk
	Slide 11: Crosstalk Correction in Action
	Slide 12: Crosstalk Detection Failure
	Slide 13: Crosstalk Detection Fixed
	Slide 14: Crosstalk Detection Fixed (continued)
	Slide 15: References

