n
-
)
1S
<
O
c
Vs
o
S

INCOSE ESEP

tus.net

www.jgar

Process Stages

ve'senting a system process, we waiting
having three stages of operation ‘
s performing some internal actions in ‘ critical
ation for performing the critical action

he internal actions have completed, and the system is 0
now waiting in a queue to perform the critical action local

~* Critical
/ / / i / It is not uncommon to have system processes that can
 The SyStem 15 performmg the critical action perform multiple operations (jobs) simultaneously

 When this action is complete, the token is passed to

e . This would b ted by having multiple tokens,
“local” indicating that another process can begin Is would be represented by having mutipie tokens

each one indicating a separate operation

Thus, multiple critical actions can be performed at
the same time

© Copyright 2021 John G. Artus www.jgartus.net 3

L

Coordinating Multiple Processes

2 ?’/

v |
@l o
N |

e
R

N
-

“ \
\\\\‘*
RS
&

\

S
N |

n way of coordinating multiple processes is to use a control key that is
rec
| nis assumes that both processes access critical resources that cannot be shared

/?//////- etween the processes such that only one process can operate at a time
/ And therefore the need to have only one process operate at a time
One way to handle this is to use the control key to alternate between two

N

/ Processes However, in this
arrangement, if one
| Process A | , Process B ‘ process is stuck in the

Key to Enable

e local stage performing

waiting some internal operation,

local
then it can dominate the
entire mechanism and

prevent the other

process from performing

i . its critical operation
‘ critical critical ‘ >

This occurs because the

key is dedicated to that
process and is waiting for
‘ the job to move to the

waiting stage

waiting local
© Copyright 2021 John G. Artus A better solution is to use mutual exclusion et /

Mutual Exclusion

;"oﬁ/{/, /

S urs when two processes are coordinated by a central controller
o
rocess operates at a time
////

Drocess A] Process B |

Place P5 (the central controller) is a
“non-deterministic” node

Ps

LE Meaning that when simulated, it will
issue its token randomly

The critical state for Process A is P2

The critical state for Process B is P4

* In this example, two processes are operating concurrently
» Each has a token that is ready to be supplied to the process
» But the first transition needs the control “key” token as well in order to fire
» The central controller can only issue the key to Process A or Process B, not to both
» So, effectively, only one process can operate at a time

* When the process completes, the key is returned to the central controller
© Copyright 2021 John G. Artus www.jgartus.net 5

Coordinating Processes with Mutual Exclusion

« Mutual exclusion is a common way of coordinating two or more processes

 As in the alternating control of processes, only one process operates at a time

* However, if one process is stuck performing some local action, the other process can obtain
the key to keep working

» This occurs because the key is available to both processes
» The key will go to the process that first has a job that reaches the waiting stage

| Process A | | Process B |

waiting waiting

key

‘ critical ° critical ‘

local local

© Copyright 2021 John G. Artus www.jgartus.net 6

Ui

Two Systems in One-Way Communication -

%/ //x/% unication, two systems can coordinate with each other using a message / acknowledge
,J

IS allows one system (System A) to send messages to (System B) with high assurance that System
B w1ll receive the message

/ » This is because System A waits for an acknowledgement received from System B before sending the next
message

» This avoids sending messages while the receiving system is not prepared to accept the new incoming message
* The acknowledgement is an indication that System B is ready to receive the next message

| SystemA | | SystemB |
Finish MsgRcvd Finish The scheme depicted
here works because the
two transmissions flow
Waitin at separate times, even
g . . AckSent if on the same
I transmission channel
But the shceme only
SendMsg >® SendAck works for one-way
MsgSent transmission of messages
Idle Idle
(o) (o)

© Copyright 2021 John G. Artus www.jgartus.net 8

Since both systems start by sending their
first message simultaneously, there is no
token in the Idle state to use to trigger
and acknowledgement

The two systems become “deadlocked”

In addition, two communication channels
would be required to allow both systems
to transmit at the same time

rosstalk occurs when the two systems
 both send messages at the same time,

while also waiting for acknowledgement
from the other system

© Copyright 2021 John G. Artus

| SystemA | | SystemB |

Finish_A o 0 b ﬁ:tu rn_B
Waiting_A @ @ AckSent_B

SendMsg_A T >® SendAck_B

MsgSent_A
Idle_A ldle_B
(o) o)
MsgSent_B
SendAck_A ®

l < l SendMsg_B
AckSent_A @ ()
[

. \ Waiting_B

Return_A Finish_B
MsgRcvd_A

www.jgartus.net

9

Attempt at Correcting Crosstalk

* One attempt to overcome the crosstalk [SystemA | [SystemB |

issue is to catch a situation in which . Wm B /'
Finish_A 7 eturn_B

one System is waiting for an ack, while
Waiting_A @ \ @ AckSent_B
T MsgSent A

it also is receiving a new message from
the other system

e This is crosstalk

SendMsg_A SendAck_B
» A special transition (Crosstalk) is added i
to terminate the waiting for the ack S 7 e
from the first received message Crosatilk B
SendAck_A

SendMsg_B
sgSent B l
®

l M

AckSent_A @ \ Waiting_B

Return_ Finish_B
MsgRcvd_A

© Copyright 2021 John G. Artus www.jgartus.net 10

Crosstalk Correction in Action

* Here, a simulation run in SNOOPY shows
the crosstalk detection scheme working

» Both systems have sent a message

* And both systems are waiting for
acknowledgement of their messages
having been received

* The crosstalk detection mechanism is
ready to fire to terminate waiting for
the acknowledgement, and to then go
ahead and process the new incoming
message and send out an
acknowledgement

* This is a case of the crosstalk
mechanism working correctly

© Copyright 2021 John G. Artus

Finish &4

\ T.MsgRcvd B

Waiting A l . l

T

MsgSent A

AckSent B {)

Re tuIn_A

MsgRcw n:i_A N

Return B

{@)Waiting B

. 4.

Fini sh_E

www.jgartus.net

11

Crosstalk Detection Failure

 However, on occasion, the mechanism declares Finish & Return B
crosstalk when the situation does not actually jn
exist

» Here, in a simulation run on SNOOPY, System B N TusReva s

f. I BckSent B

Waiting A(%) |

is waiting on acknowledgement of a message it
previously sent to System A

* While System B waits, System A sends a new
message
» This is not a case of crosstalk because both
messages are not being sent simultaneously

» Nevertheless, System B is now set to declare a
crosstalk (falsely) ® Sendtsg_B

M=sgSent &

LckSent A ()

Te)Waiting B
ON
Ms gR:;w'd:E;-""'--..____

Return & Finish B

© Copyright 2021 John G. Artus www.jgartus.net 12

Crosstalk Detection Fixed

* |In this amendment to the network, the [Sstema) Fm,shed . System B
roblem of false detection of crasstalk is <
p Finish_A\ Return B
corrected @ MseRovd B
* Here, a token in AckSent cannot return to Waiting A @@ AckSent_B
|dle until an additional token is provided T
e]ther by SendMsg_A —Afgsent / SendAck_B
« System A finishing it’s complete message
sending operation after receiving an idle_A . Idle B
acknowledgement from System B, or (o) v
« System A recognizing a valid crosstalk situation \
 Eitherway, System B will bot be able to e eaw Senditsg_B
initiate a new message (from ldle) until l g
System A completely finishes its processing o i
of the last message sent by System B e
Return_A g \ Finish_B
. L

© Copyright 2021 John G. Artus www.jgartus.net (K]

Crosstalk Detection Fixed (continued)

Fini sh_ﬁ Finishe u:i_ﬁ Re tuIn_Ei.

» Here is a repeat of the previous scenario
in which System B is waiting for an
acknowledgement from System B _

» System A will NOT be able to return to Idle |/ N————_" e\
and send another message UNTIL System A
completes its processing of the previous
message from System B

™ _ MsgRcvd B
P

™| MsgSent_B
[

Ack3ent A 'f' MsgRowd '. a']

.

Eeturn & Finished B Finish B

© Copyright 2021 John G. Artus www.jgartus.net 14

References

Reisig, W.(1982). Petri Nets — An Introduction. Springer-Verlag, Berlin, Heidelberg, New York
2. Reisig, W. (2013) Understanding Petri Nets — Modeling Techniques, Analysis Methods, Case Studies. Springe rlag, Berli

www.jgartus.net 15

	Slide 1: Petri Net Patterns
	Slide 2: Mutual Exclusion
	Slide 3: Process Stages
	Slide 4: Coordinating Multiple Processes
	Slide 5: Mutual Exclusion
	Slide 6: Coordinating Processes with Mutual Exclusion
	Slide 7: Avoiding Crosstalk
	Slide 8: Two Systems in One-Way Communication
	Slide 9: Two Systems in Two-Way Communication
	Slide 10: Attempt at Correcting Crosstalk
	Slide 11: Crosstalk Correction in Action
	Slide 12: Crosstalk Detection Failure
	Slide 13: Crosstalk Detection Fixed
	Slide 14: Crosstalk Detection Fixed (continued)
	Slide 15: References

